Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Sign up for alerts
  • About us
    • About Development
    • About the Node
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contacts
    • Subscriptions
    • Feedback
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

User menu

  • Log in
  • Log out

Search

  • Advanced search
Development
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

supporting biologistsinspiring biology

Development

  • Log in
Advanced search

RSS  Twitter  Facebook  YouTube 

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Sign up for alerts
  • About us
    • About Development
    • About the Node
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contacts
    • Subscriptions
    • Feedback
JOURNAL ARTICLES
A novel WD40 protein, CHE-2, acts cell-autonomously in the formation of C. elegans sensory cilia
M. Fujiwara, T. Ishihara, I. Katsura
Development 1999 126: 4839-4848;
M. Fujiwara
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
T. Ishihara
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
I. Katsura
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & metrics
  • PDF
Loading

Summary

To elucidate the mechanism of sensory cilium formation, we analyzed mutants in the Caenorhabditis elegans che-2 gene. These mutants have extremely short cilia with an abnormal posterior projection, and show defects in behaviors that are mediated by ciliated sensory neurons. The che-2 gene encodes a new member of the WD40 protein family, suggesting that it acts in protein-protein interaction. Analysis of mutation sites showed that both the amino-terminal WD40 repeats and the carboxyl-terminal non-WD40 domain are necessary for the CHE-2 function. CHE-2-tagged green fluorescent protein is localized at the cilia of almost all the ciliated sensory neurons. Expression of che-2 in a subset of sensory neurons of a che-2 mutant by using a heterologous promoter resulted in restoration of the functions and cilium morphology of only the che-2-expressing neurons. Thus, che-2 acts cell-autonomously. This technique can be used in the future for determining the function of each type of che-2-expressing sensory neuron. Using green fluorescent protein, we found that the extension of cilia in wild-type animals took place at the late embryonic stage, whereas the cilia of che-2 mutant animals remained always short during development. Hence, the abnormal posterior projection is due to the inability of cilia to extend, rather than degeneration of cilia once correctly formed. Expression of che-2 in a che-2 mutant under a heat shock promoter showed that the extension of cilia, surprisingly, can occur even at the adult stage, and that such cilia can function apparently normally in behavior.

Reference

    1. Albert P. S.,
    2. Brown S. J.,
    3. Riddle D. L.
    (1981) Sensory control of dauer larva formation in Caenorhabditis elegans. J. Comp. Neurol 198, 435–451
    OpenUrlCrossRefPubMedWeb of Science
    1. Avery L.,
    2. Horvitz H. R.
    (1987) A cell that dies during wild-type C. elegans development can function as a neuron in a ced-3 mutant. Cell 51, 1071–1078
    OpenUrlCrossRefPubMedWeb of Science
    1. Bargmann C. I.,
    2. Thomas J. H.,
    3. Horvitz H. R.
    (1990) Chemosensory cell function in the behavior and development of Caenorhabditis elegans. Cold Spring Harbor Symp. Quant. Biol 55, 529–538
    OpenUrlAbstract/FREE Full Text
    1. Bargmann C. I.,
    2. Horvitz H. R.
    (1991) Chemosensory neurons with overlapping functions direct chemotaxis to multiple chemicals in C. elegans. Neuron 7, 729–742
    OpenUrlCrossRefPubMedWeb of Science
    1. Bargmann C. I.,
    2. Hartwieg E.,
    3. Horvitz H. R.
    (1993) Odorant-selective genes and neurons mediate olfaction in C. elegans. Cell 74, 515–527
    OpenUrlCrossRefPubMedWeb of Science
    1. Brenner S.
    (1974) The genetics of Caenorhabditis elegans. Genetics 77, 71–94
    OpenUrlAbstract/FREE Full Text
    1. Buck L.,
    2. Axel R.
    (1991) A novel multigene family may encode odorant receptors: a molecular basis for odor recognition. Cell 65, 175–187
    OpenUrlCrossRefPubMedWeb of Science
    1. Burdine R. D.,
    2. Chen E. B.,
    3. Kwok S. F.,
    4. Stern M. J.
    (1997) egl-17 encodes an invertebrate fibroblast growth factor family member required specifically for sex myoblast migration in Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 94, 2433–2437
    OpenUrlAbstract/FREE Full Text
    1. Chalfie M.,
    2. Sulston J. E.,
    3. White J. G.,
    4. Southgate E.,
    5. Thomson J. N.,
    6. Brenner S.
    (1985) The neural circuit for touch sensitivity in C. elegans. J. Neurosci 5, 956–964
    OpenUrlAbstract
    1. Cole D. G.,
    2. Diener D. R.,
    3. Himelblau A. L.,
    4. Beech P. L.,
    5. Fuster J. C.,
    6. Rosenbaum J. L.
    (1998) Chlamydomonas kinesin-II-dependent intraflagellar transport (IFT): IFT particles contain proteins required for ciliary assembly in Caenorhabditis elegans sensory neurons. J. Cell Biol 141, 993–1008
    OpenUrlAbstract/FREE Full Text
    1. Collet J.,
    2. Spike C. A.,
    3. Lundquist E. A.,
    4. Shaw J. E.,
    5. Herman R. K.
    (1998) Analysis of osm-6, a gene that affects sensory cilium structure and sensory neuron function in Caenorhabditis elegans. Genetics 148, 187–200
    OpenUrlAbstract/FREE Full Text
    1. Coulson A.
    (1996) The Caenorhabditis elegans genome project. Biochem. Soc. Trans 24, 289–291
    OpenUrlFREE Full Text
    1. Culotti J. G.,
    2. Russell R. L.
    (1978) Osmotic avoidance defective mutants of the nematode C. elegans. Genetics 90, 243–256
    OpenUrlAbstract/FREE Full Text
    1. Hedgecock E. M.,
    2. Culotti J. G.,
    3. Thomson J. N.,
    4. Perkins L. A.
    (1985) Axonal guidance mutants of Caenorhabditis elegans identified by filling sensory neurons with fluorescein dyes. Dev. Biol 111, 158–170
    OpenUrlCrossRefPubMedWeb of Science
    1. Hodgkin J.
    (1983) Male phenotypes and mating efficiency in C. elegans. Genetics 103, 43–64
    OpenUrlAbstract/FREE Full Text
    1. Johnson K. A.,
    2. Rosenbaum J. L.
    (1992) Polarity of flagellar assembly in Chlamydomonas. J. Cell Biol 119, 1605–1611
    OpenUrlAbstract/FREE Full Text
    1. Jongeward G. D.,
    2. Clandinin T. R.,
    3. Sternberg P. W.
    (1995) sli-1, a negative regulator of let-23 -mediated signaling in C. elegans. Genetics 139, 1553–1566
    OpenUrlAbstract/FREE Full Text
    1. Kozminski K. G.,
    2. Beech P. L.,
    3. Rosenbaum J. L.
    (1995) The Chlamydomonas kinesin-like protein FLA10 is involved in motility associated with the flagellar membrane. J. Cell Biol 131, 1517–1527
    OpenUrlAbstract/FREE Full Text
    1. Krause M.,
    2. Hirsh D.
    (1987) A trans-spliced leader sequence on actin mRNA in C. elegans. Cell 49, 753–761
    OpenUrlCrossRefPubMedWeb of Science
    1. Kumar J. P.,
    2. Ready D. F.
    (1995) Rhodopsin plays an essential structural role in Drosophila photoreceptor development. Development 121, 4359–4370
    OpenUrlAbstract
    1. Kurahashi T.
    (1989) Activation by odorants of cation-selective conductance in the olfactory receptor cell isolated from the newt. J. Physiol 419, 177–192
    OpenUrl
    1. Kyte J.,
    2. Doolittle R. F.
    (1982) A simple method for displaying the hydropathic character of a protein. J. Mol. Biol 157, 105–132
    OpenUrlCrossRefPubMedWeb of Science
    1. Lewis J. A.,
    2. Hodgkin J. A.
    (1977) Specific neuroanatomical changes in chemosensory mutants of the nematode C. elegans. J. Comp. Neurol 172, 489–510
    OpenUrlCrossRefPubMedWeb of Science
    1. Liu K. S.,
    2. Sternberg P. W.
    (1995) Sensory regulation of male mating behavior in Caenorhabditis elegans. Neuron 14, 79–89
    OpenUrlCrossRefPubMedWeb of Science
    1. Lowe G.,
    2. Gold G. H.
    (1991) The spatial distributions of odorant sensitivity and odorant-induced currents in salamander olfactory receptor cells. J. Physiol 442, 147–168
    OpenUrl
    1. Mello C.,
    2. Fire A.
    (1995) DNA transformation. Meth. Cell Biol 48, 451–482
    OpenUrlCrossRefPubMedWeb of Science
    1. Menco B. P.,
    2. Bruch R. C.,
    3. Dau B.,
    4. Danho W.
    (1992) Ultrastructual localization of olfactory transduction components: the G protein subunit Golfand type III adenylyl cyclase. Neuron 8, 441–453
    OpenUrlCrossRefPubMedWeb of Science
    1. Montell C.
    (1998) TRP trapped in fly signaling web. Curr. Opin. Neurobiol 8, 389–397
    OpenUrlCrossRefPubMedWeb of Science
    1. Nakamura T.,
    2. Gold H. G.
    (1987) A cyclic nucleotide-gated conductance in olfactory receptor cilia. Nature 325, 442–444
    OpenUrlCrossRefPubMedWeb of Science
    1. Neer E. J.,
    2. Schmidt C. J.,
    3. Nambudripad R.,
    4. Smith T. F.
    (1994) The ancient regulatory-protein family of WD-repeat proteins. Nature 371, 297–300
    OpenUrlCrossRefPubMedWeb of Science
    1. Pace U.,
    2. Hanski E.,
    3. Salomon Y.,
    4. Lancet D.
    (1985) Odorant-sensitive adenylate cyclase may mediate olfactory reception. Nature 316, 255–258
    OpenUrlCrossRefPubMed
    1. Pazour G. J.,
    2. Wilkerson C. G.,
    3. Witman G. B.
    (1998) A dynein light chain is essential for the retrograde particle movement of intraflagellar transport (IFT). J. Cell Biol 141, 979–992
    OpenUrlAbstract/FREE Full Text
    1. Perkins L. A.,
    2. Hedgecock E. M.,
    3. Thomson J. N.,
    4. Culotti J. G.
    (1986) Mutant sensory cilia in the nematode C. elegans. Dev. Biol 117, 456–487
    OpenUrlCrossRefPubMedWeb of Science
    1. Roayaie K.,
    2. Crump J. G.,
    3. Sagasti A.,
    4. Bargmann C. I.
    (1998) The G-alpha protein ODR-3 mediates olfactory and nociceptive function and controls cilium morphogenesis in C. elegans olfactory neurons. Neuron 20, 55–67
    OpenUrlCrossRefPubMedWeb of Science
    1. Shakir M. A.,
    2. Fukishige T.,
    3. Yasuda H.,
    4. Miwa J.,
    5. Siddiqui S. S.
    (1993) C. elegansosm-3 gene mediating osmotic avoidance-behavior encodes a kinesin-like protein. NeuroReport 4, 891–894
    OpenUrlCrossRefPubMedWeb of Science
    1. Sondek J.,
    2. Bohm A.,
    3. Lambright D. G.,
    4. Hamm H. E.,
    5. Sigler P. B.
    (1996). Crystal structure of a GAprotein beta/gamma dimer at 2.1 Å resolution. Nature 379, 369–374
    OpenUrlCrossRefPubMedWeb of Science
    1. Starich T. A.,
    2. Herman R. K.,
    3. Kari C. K.,
    4. Yeh W. H.,
    5. Schackwitz W. S.,
    6. Schuyler M. W.,
    7. Collet J.,
    8. Thomas J. H.,
    9. Riddle D. L.
    (1995) Mutations affecting the chemosensory neurons of Caenorhabditis elegans. Genetics 139, 171–188
    OpenUrlAbstract/FREE Full Text
    1. Sulston J. E.,
    2. Albertson D. G.,
    3. Thomson J. N.
    (1980) The C. elegans male: Postembryonic development of nongonadal structures. Dev. Biol 78, 542–576
    OpenUrlCrossRefPubMedWeb of Science
    1. Sulston J. E.,
    2. Schierenberg E.,
    3. White J. G.,
    4. Thomson J. N.
    (1983) The embryonic cell lineage of the nematode C. elegans. Dev. Biol 100, 64–119
    OpenUrlCrossRefPubMedWeb of Science
    1. Tabish M.,
    2. Siddiqui Z. K.,
    3. Nishikawa K.,
    4. Siddiqui S. S.
    (1995) Exclusive expression of C. elegansosm-3 kinesin gene in chemosensory neurons open to the external environment. J. Mol. Biol 247, 377–389
    OpenUrlCrossRefPubMedWeb of Science
    1. Troemel E. R.,
    2. Chou J. H.,
    3. Dwyer N. D.,
    4. Colbert H. A.,
    5. Bargmann C. I.
    (1995) Divergent seven transmembrane receptors are candidate chemosensory receptors in C. elegans. Cell 83, 207–218
    OpenUrlCrossRefPubMedWeb of Science
    1. Tsunoda S.,
    2. Sierralta J.,
    3. Sun Y.,
    4. Bodner R.,
    5. Suzuki E.,
    6. Becker A.,
    7. Socolich M.,
    8. Zuker C. S.
    (1997) A multivalent PDZ-domain protein assembles signalling complexes in a G-protein-coupled cascade. Nature 388, 243–249
    OpenUrlCrossRefPubMedWeb of Science
    1. Villeneuve A. M.
    (1994) A cis-acting locus that promotes crossing over between X chromosomes in Caenorhabditis elegans. Genetics 136, 887–902
    OpenUrlAbstract/FREE Full Text
    1. Voorn L. V.,
    2. Ploegh H. I.
    (1992) The WD-40 repeat. FEBSLett 307, 131–134
    OpenUrlCrossRefPubMedWeb of Science
    1. Yu S.,
    2. Avery L.,
    3. Baude E.,
    4. Garbers D. L.
    (1997) Guanylyl cyclase expression in specific sensory neurons: A new family of chemosensory receptors. Proc. Natl. Acad. Sci. USA 94, 3384–3387
    OpenUrlAbstract/FREE Full Text
    1. Zwaal R. R.,
    2. Mendel J. E.,
    3. Sternberg P. W.,
    4. Plasterk R. H. A.
    (1997) Two neuronal G proteins are involved in chemosensation of the Caenorhabditis elegans dauer-inducing pheromone. Genetics 145, 715–727
    OpenUrlAbstract/FREE Full Text
Previous ArticleNext Article
Back to top
Previous ArticleNext Article

This Issue

 Download PDF

Email

Thank you for your interest in spreading the word on Development.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
A novel WD40 protein, CHE-2, acts cell-autonomously in the formation of C. elegans sensory cilia
(Your Name) has sent you a message from Development
(Your Name) thought you would like to see the Development web site.
Share
JOURNAL ARTICLES
A novel WD40 protein, CHE-2, acts cell-autonomously in the formation of C. elegans sensory cilia
M. Fujiwara, T. Ishihara, I. Katsura
Development 1999 126: 4839-4848;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Citation Tools
JOURNAL ARTICLES
A novel WD40 protein, CHE-2, acts cell-autonomously in the formation of C. elegans sensory cilia
M. Fujiwara, T. Ishihara, I. Katsura
Development 1999 126: 4839-4848;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Alerts

Please log in to add an alert for this article.

Sign in to email alerts with your email address

Article navigation

  • Top
  • Article
  • Info & metrics
  • PDF

Related articles

Cited by...

More in this TOC section

  • Groucho augments the repression of multiple Even skipped target genes in establishing parasegment boundaries
  • Axial skeletal patterning in mice lacking all paralogous group 8 Hox genes
  • Morphogenetic cell movements in the middle region of the dermomyotome dorsomedial lip associated with patterning and growth of the primary epaxial myotome
Show more JOURNAL ARTICLES

Similar articles

Other journals from The Company of Biologists

Journal of Cell Science

Journal of Experimental Biology

Disease Models & Mechanisms

Biology Open

Advertisement

Interviews — Bénédicte Sanson and Kate Storey

Bénédicte Sanson and Kate Storey

Hear from Bénédicte Sanson, winner of the BSDB’s Cheryll Tickle medal, and Kate Storey, winner of the BSDB’s Waddington Medal, as they discuss their research, the future of the field and the importance of collaboration.


Review Commons launches

We're excited to be an affiliate journal for Review Commons, the ASAPbio/EMBO platform for high-quality journal-independent peer-review in the life sciences, which went live on 09 December.


Have you heard about our Travelling Fellowships?

Peter Baillie-Johnson in Switzerland

Early-career researchers can apply for up to £2,500 to offset the cost of travel and expenses to make collaborative visits to other labs around the world. Read about Peter’s experience in Switzerland, where he joined forces with the Lutolf lab to refine a protocol for producing gastruloids.


Publishing peer review reports

To continue working towards transparency around the editorial process, Development now publishes a ‘Peer review history file’ alongside published papers. Read more about the policy and see the reports for yourself in one the first papers to publish the reports (under the ‘Info & metrics’ tab).


Development at a glance — Cell interactions in collective cell migration

Extract from the poster showing specific cell-cell interactions in metastasis.

Take a look at the latest poster and accompanying article by Denise Montell and her colleagues from the University of California, where they describe a sampling of both known and new cells that migrate collectively in vivo.

Articles

  • Accepted manuscripts
  • Issue in progress
  • Latest complete issue
  • Issue archive
  • Archive by article type
  • Special issues
  • Subject collections
  • Sign up for alerts

About us

  • About Development
  • About the Node
  • Editors and board
  • Editor biographies
  • Travelling Fellowships
  • Grants and funding
  • Journal Meetings
  • Workshops
  • The Company of Biologists

For authors

  • Submit a manuscript
  • Aims and scope
  • Presubmission enquiries
  • Article types
  • Manuscript preparation
  • Cover suggestions
  • Editorial process
  • Promoting your paper
  • Open Access
  • Biology Open transfer

Journal info

  • Journal policies
  • Rights and permissions
  • Media policies
  • Reviewer guide
  • Sign up for alerts

Contact

  • Contact Development
  • Subscriptions
  • Advertising
  • Feedback

 Twitter   YouTube   LinkedIn

© 2019   The Company of Biologists Ltd   Registered Charity 277992