Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Sign up for alerts
  • About us
    • About Development
    • About the Node
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contacts
    • Subscriptions
    • Advertising
    • Feedback
    • For library administrators
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

User menu

  • Log in
  • Log out

Search

  • Advanced search
Development
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

supporting biologistsinspiring biology

Development

  • Log in
Advanced search

RSS  Twitter  Facebook  YouTube 

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Sign up for alerts
  • About us
    • About Development
    • About the Node
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contacts
    • Subscriptions
    • Advertising
    • Feedback
    • For library administrators
JOURNAL ARTICLES
nos-1 and nos-2, two genes related to Drosophila nanos, regulate primordial germ cell development and survival in Caenorhabditis elegans
K. Subramaniam, G. Seydoux
Development 1999 126: 4861-4871;
K. Subramaniam
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
G. Seydoux
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & metrics
  • PDF
Loading

Summary

In Drosophila, the posterior determinant nanos is required for embryonic patterning and for primordial germ cell (PGC) development. We have identified three genes in Caenorhabditis elegans that contain a putative zinc-binding domain similar to the one found in nanos, and show that two of these genes function during PGC development. Like Drosophila nanos, C. elegans nos-1 and nos-2 are not generally required for PGC fate specification, but instead regulate specific aspects of PGC development. nos-2 is expressed in PGCs around the time of gastrulation from a maternal RNA associated with P granules, and is required for the efficient incorporation of PGCs into the somatic gonad. nos-1 is expressed in PGCs after gastrulation, and is required redundantly with nos-2 to prevent PGCs from dividing in starved animals and to maintain germ cell viability during larval development. In the absence of nos-1 and nos-2, germ cells cease proliferation at the end of the second larval stage, and die in a manner that is partially dependent on the apoptosis gene ced-4. Our results also indicate that putative RNA-binding proteins related to Drosophila Pumilio are required for the same PGC processes as nos-1 and nos-2. These studies demonstrate that evolutionarily distant organisms utilize conserved factors to regulate early germ cell development and survival, and that these factors include members of the nanos and pumilio gene families.

Reference

    1. Ashcroft N. R.,
    2. Srayko M.,
    3. Kosinski M. E.,
    4. Mains P. E.,
    5. Golden A.
    (1999) RNA-Mediated interference of a cdc25 homolog in Caenorhabditis elegans results in defects in the embryonic cortical membrane, meiosis, and mitosis. Dev. Biol 206, 15–32
    OpenUrlCrossRefPubMedWeb of Science
    1. Austin J.,
    2. Kimble J.
    (1987) glp-1 is required in the germ line for regulation of the decision between mitosis and meiosis in C. elegans. Cell 51, 589–599
    OpenUrlCrossRefPubMedWeb of Science
    1. Barker D. D.,
    2. Wang C.,
    3. Moore J.,
    4. Dickinson L. K.,
    5. Lehmann R.
    (1992) Pumilio is essential for function but not for distribution of the Drosophila abdominal determinant Nanos. Genes Dev 6, 2312–2326
    OpenUrlAbstract/FREE Full Text
    1. Beanan M. J.,
    2. Strome S.
    (1992) Characterization of a germ-line proliferation mutation in C. elegans. Development 116, 755–766
    OpenUrlAbstract
    1. Bergsten S. E.,
    2. Gavis E. R.
    (1999) Role for mRNA localization in translational activation but not spatial restriction of nanos RNA. Development 126, 659–669
    OpenUrlAbstract
    1. Bhat K. M.
    (1999) The posterior determinant gene nanos is required for the maintenance of the adult germline stem cells during Drosophila oogenesis. Genetics 151, 1479–1492
    OpenUrlAbstract/FREE Full Text
    1. Brenner S.
    (1974) The genetics of Caenorhabditis elegans. Genetics 77, 71–94
    OpenUrlAbstract/FREE Full Text
    1. Crittenden S. L.,
    2. Rudel D.,
    3. Binder J.,
    4. Evans T. C.,
    5. Kimble J.
    (1997) Genes required for GLP-1 asymmetry in the early Caenorhabditis elegans embryo. Dev. Biol 181, 36–46
    OpenUrlCrossRefPubMedWeb of Science
    1. Curtis D.,
    2. Apfeld J.,
    3. Lehmann R.
    (1995) nanos is an evolutionarily conserved organizer of anterior-posterior polarity. Development 121, 1899–1910
    OpenUrlAbstract
    1. Curtis D.,
    2. Treiber D. K.,
    3. Tao F.,
    4. Zamore P. D.,
    5. Williamson J. R.,
    6. Lehmann R.
    (1997) A CCHC metal-binding domain in Nanos is essential for translational regulation. EMBO J 16, 834–843
    OpenUrlAbstract
    1. Dernburg A. F.,
    2. McDonald K.,
    3. Moulder G.,
    4. Barstead R.,
    5. Dresser M.,
    6. Villeneuve A. M.
    (1998) Meiotic recombination in C. elegans initiates by a conserved mechanism and is dispensable for homologous chromosome synapsis. Cell 94, 387–398
    OpenUrlCrossRefPubMedWeb of Science
    1. Driscoll M.,
    2. Chalfie M.
    (1992) Developmental and abnormal cell death in C. elegans. Trends Neurosci 15, 15–19
    OpenUrlCrossRefPubMedWeb of Science
    1. Eddy E. M.
    (1975) Germ plasm and the differentiation of the germ cell line. Int. Rev. Cytol 43, 229–280
    OpenUrlPubMedWeb of Science
    1. Ellis H. M.,
    2. Horvitz H. R.
    (1986) Genetic control of programmed cell death in the nematode C. elegans. Cell 44, 817–829
    OpenUrlCrossRefPubMedWeb of Science
    1. Fay D. S.,
    2. Stanley H. M.,
    3. Han M.,
    4. Wood W. B.
    (1999) A Caenorhabditis elegans homologue of hunchback is required for late stages of development but not early embryonic patterning. Dev. Biol 205, 240–253
    OpenUrlCrossRefPubMedWeb of Science
    1. Fire A.,
    2. Xu S.,
    3. Montgomery M. K.,
    4. Kostas S. A.,
    5. Driver S. E.,
    6. Mello C. C.
    (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806–811
    OpenUrlCrossRefPubMedWeb of Science
    1. Forbes A.,
    2. Lehmann R.
    (1998) Nanos and Pumilio have critical roles in the development and function of Drosophila germline stem cells. Development 125, 679–690
    OpenUrlAbstract
    1. Fujiwara Y.,
    2. Komiya T.,
    3. Kawabata H.,
    4. Sato M.,
    5. Fujimoto H.,
    6. Furusawa M.,
    7. Noce T.
    (1994) Isolation of a DEAD-family protein gene that encodes a murine homolog of Drosophila vasa and its specific expression in germ cell lineage. Proc. Natl Acad. Sci. USA 91, 12258–12262
    OpenUrlAbstract/FREE Full Text
    1. Garvin C.,
    2. Holdeman R.,
    3. Strome S.
    (1998) The phenotype of mes-2, mes-3, mes-4 and mes-6, maternal-effect genes required for survival of the germline in Caenorhabditis elegans, is sensitive to chromosome dosage. Genetics 148, 167–185
    OpenUrlAbstract/FREE Full Text
    1. Gavis E. R.,
    2. Lunsford L.,
    3. Bergsten S. E.,
    4. Lehmann R.
    (1996) A conserved 90 nucleotide element mediates translational repression of nanos RNA. Development 122, 2791–2800
    OpenUrlAbstract
    1. Gruidl M. E.,
    2. Smith P. A.,
    3. Kuznicki K. A.,
    4. McCrone J. S.,
    5. Kirchner J.,
    6. Roussell D. L.,
    7. Strome S.,
    8. Bennett K. L.
    (1996) Multiple potential germ-line helicases are components of the germ-line-specific P granules of Caenorhabditis elegans. Proc. Natl Acad. Sci. USA 93, 13837–13842
    OpenUrlAbstract/FREE Full Text
    1. Gumienny T. L.,
    2. Lambie E.,
    3. Hartwieg E.,
    4. Horvitz H. R.,
    5. Hengartner M. O.
    (1999) Genetic control of programmed cell death in the Caenorhabditis elegans hermaphrodite germline. Development 126, 1011–1022
    OpenUrlAbstract
    1. Harfe B. D.,
    2. Gomes A. V.,
    3. Kenyon C.,
    4. Liu J.,
    5. Krause M.,
    6. Fire A.
    (1998) Analysis of a Caenorhabditis elegans Twist homolog identifies conserved and divergent aspects of mesodermal patterning. Genes Dev 12, 2623–2635
    OpenUrlAbstract/FREE Full Text
    1. Hay B.,
    2. Jan L. Y.,
    3. Jan Y. N.
    (1988) A protein component of Drosophila polar granules is encoded by vasa and has extensive sequence similarity to ATP-dependent helicases. Cell 55, 577–587
    OpenUrlCrossRefPubMedWeb of Science
    1. Holdeman R.,
    2. Nehrt S.,
    3. Strome S.
    (1998) MES-2, a maternal protein essential for viability of the germline in Caenorhabditis elegans, is homologous to a Drosophila Polycomb group protein. Development 125, 2457–2467
    OpenUrlAbstract
    1. Hong Y.,
    2. Roy R.,
    3. Ambros V.
    (1998) Developmental regulation of a cyclin-dependent kinase inhibitor controls postembryonic cell cycle progression in Caenorhabditis elegans. Development 125, 3585–3597
    OpenUrlAbstract
    1. Hulskamp M.,
    2. Schroder C.,
    3. Pfeifle C.,
    4. Jackle H.,
    5. Tautz D.
    (1989) Posterior segmentation of the Drosophila embryo in the absence of a maternal posterior organizer gene. Nature 338, 629–632
    OpenUrlCrossRefPubMed
    1. Irish V.,
    2. Lehmann R.,
    3. Akam M.
    (1989) The Drosophila posterior-group gene nanos functions by repressing hunchback activity. Nature 338, 646–648
    OpenUrlCrossRefPubMed
    1. Jones A. R.,
    2. Francis R.,
    3. Schedl T.
    (1996) GLD-1, a cytoplasmic protein essential for oocyte differentiation, shows stage-and sex-specific expression during Caenorhabditis elegans germline development. Dev. Biol 180, 165–183
    OpenUrlCrossRefPubMedWeb of Science
    1. Kimble J.,
    2. Hirsh D.
    (1979) The postembryonic cell lineages of the hermaphrodite and male gonads in Caenorhabditis elegans. Dev. Biol 70, 396–417
    OpenUrlCrossRefPubMedWeb of Science
    1. Kobayashi S.,
    2. Yamada M.,
    3. Asaoka M.,
    4. Kitamura T.
    (1996) Essential role of the posterior morphogen nanos for germline development in Drosophila. Nature 380, 708–711
    OpenUrlCrossRefPubMed
    1. Komiya T.,
    2. Itoh K.,
    3. Ikenishi K.,
    4. Furusawa M.
    (1994) Isolation and characterization of a novel gene of the DEAD box protein family which is specifically expressed in germ cells of Xenopus laevis. Dev. Biol 162, 354–363
    OpenUrlCrossRefPubMedWeb of Science
    1. Komiya T.,
    2. Tanigawa Y.
    (1995) Cloning of a gene of the DEAD box protein family which is specifically expressed in germ cells in rats. Biochem. Biophys. Res. Commun 207, 405–410
    OpenUrlCrossRefPubMedWeb of Science
    1. Labouesse M.,
    2. Hartwieg E.,
    3. Horvitz H. R.
    (1996) The Caenorhabditis elegans LIN-26 protein is required to specify and/or maintain all non-neuronal ectodermal cell fates. Development 122, 2579–2588
    OpenUrlAbstract
    1. Lasko P. F.,
    2. Ashburner M.
    (1988) The product of the Drosophila gene vasa is very similar to eukaryotic initiation factor-4A. Nature 335, 611–617
    OpenUrlCrossRefPubMedWeb of Science
    1. Lehmann R.,
    2. Nusslein-Volhard C.
    (1987) Hunchback, a gene required for segmentation of an anterior and posterior region of the Drosophila embryo. Dev. Biol 119, 402–417
    OpenUrlCrossRefPubMedWeb of Science
    1. Mello C. C.,
    2. Schubert C.,
    3. Draper B.,
    4. Zhang W.,
    5. Lobel R.,
    6. Priess J. R.
    (1996) The PIE-1 protein and germline specification in C. elegans embryos. Nature 382, 710–712
    OpenUrlCrossRefPubMed
    1. Mosquera L.,
    2. Forristall C.,
    3. Zhou Y.,
    4. King M. L.
    (1993) A mRNA localized to the vegetal cortex of Xenopus oocytes encodes a protein with a nanos-like zinc finger domain. Development 117, 377–386
    OpenUrlAbstract/FREE Full Text
    1. Murata Y.,
    2. Wharton R. P.
    (1995) Binding of pumilio to maternal hunchback mRNA is required for posterior patterning in Drosophila embryos. Cell 80, 747–756
    OpenUrlCrossRefPubMedWeb of Science
    1. Olsen L. C.,
    2. Aasland R.,
    3. Fjose A.
    (1997) A vasa-like gene in zebrafish identifies putative primordial germ cells. Mech. Dev 66, 95–105
    OpenUrlCrossRefPubMedWeb of Science
    1. Pilon M.,
    2. Weisblat D. A.
    (1997) A nanos homolog in leech. Development 124, 1771–1780
    OpenUrlAbstract
    1. Rocheleau C. E.,
    2. Downs W. D.,
    3. Lin R.,
    4. Wittmann C.,
    5. Bei Y.,
    6. Cha Y. H.,
    7. Ali M.,
    8. Priess J. R.,
    9. Mello C. C.
    (1997) Wnt signaling and an APC-related gene specify endoderm in early C. elegans embryos [see comments]. Cell 90, 707–716
    OpenUrlCrossRefPubMedWeb of Science
    1. Seydoux G.,
    2. Dunn M. A.
    (1997) Transcriptionally repressed germ cells lack a subpopulation of phosphorylated RNA polymerase II in early embryos of Caenorhabditis elegans and Drosophila melanogaster. Development 124, 2191–2201
    OpenUrlAbstract
    1. Seydoux G.,
    2. Fire A.
    (1994) Soma-germline asymmetry in the distributions of embryonic RNAs in Caenorhabditis elegans. Development 120, 2823–2834
    OpenUrlAbstract
    1. Seydoux G.,
    2. Fire A.
    (1995) Whole-mount in situ hybridization for the detection of RNA in Caenorhabditis elegans embryos. Methods Cell Biol 48, 323–337
    OpenUrlPubMedWeb of Science
    1. Shibata N.,
    2. Umesono Y.,
    3. Orii H.,
    4. Sakurai T.,
    5. Watanabe K.,
    6. Agata K.
    (1999) Expression of vasa(vas)-related genes in germline cells and totipotent somatic stem cells of planarians. Dev. Biol 206, 73–87
    OpenUrlCrossRefPubMedWeb of Science
    1. Strome S.
    (1986) Asymmetric movements of cytoplasmic components in Caenorhabditis elegans zygotes. J. Embryol. Exp. Morph 97, 15–29
    1. Strome S.,
    2. Wood W. B.
    (1982) Immunofluorescence visualization of germ-line-specific cytoplasmic granules in embryos, larvae, and adults of Caenorhabditis elegans. Proc. Natl Acad. Sci. USA 79, 1558–1562
    OpenUrlAbstract/FREE Full Text
    1. Strome S.,
    2. Wood W. B.
    (1983) Generation of asymmetry and segregation of germ-line granules in early C. elegans embryos. Cell 35, 15–25
    OpenUrlCrossRefPubMedWeb of Science
    1. Sulston J. E.,
    2. Horvitz H. R.
    (1977) Post-embryonic cell lineages of the nematode, Caenorhabditis elegans. Dev. Biol 56, 110–156
    OpenUrlCrossRefPubMedWeb of Science
    1. Sulston J. E.,
    2. Schierenberg E.,
    3. White J. G.,
    4. Thomson J. N.
    (1983) The embryonic cell lineage of the nematode Caenorhabditis elegans. Dev. Biol 100, 64–119
    OpenUrlCrossRefPubMedWeb of Science
    1. Wang C.,
    2. Dickinson L. K.,
    3. Lehmann R.
    (1994) Genetics of nanos localization in Drosophila. Dev. Dyn 199, 103–115
    OpenUrlCrossRefPubMedWeb of Science
    1. Wang C.,
    2. Lehmann R.
    (1991) Nanos is the localized posterior determinant in Drosophila. Cell 66, 637–647
    OpenUrlCrossRefPubMedWeb of Science
    1. Wharton R. P.,
    2. Sonoda J.,
    3. Lee T.,
    4. Patterson M.,
    5. Murata Y.
    (1998) The Pumilio RNA-binding domain is also a translational regulator. Mol. Cell 1, 863–872
    OpenUrl
    1. Williamson A.,
    2. Lehmann R.
    (1996) Germ cell development in Drosophila. Annu. Rev. Cell Dev. Biol 12, 365–391
    OpenUrlCrossRefPubMedWeb of Science
    1. Wylie C.
    (1999) Germ cells. Cell 96, 165–174
    OpenUrlCrossRefPubMedWeb of Science
    1. Yochem J.,
    2. Greenwald I.
    (1989) glp-1 and lin-12, genes implicated in distinct cell-cell interactions in C. elegans, encode similar transmembrane proteins. Cell 58, 553–563
    OpenUrlCrossRefPubMedWeb of Science
    1. Yuan J.,
    2. Horvitz H. R.
    (1992) The Caenorhabditis elegans cell death gene ced-4 encodes a novel protein and is expressed during the period of extensive programmed cell death. Development 116, 309–320
    OpenUrlAbstract/FREE Full Text
    1. Yuan J.,
    2. Shaham S.,
    3. Ledoux S.,
    4. Ellis H. M.,
    5. Horvitz H. R.
    (1993) The C. elegans cell death gene ced-3 encodes a protein similar to mammalian interleukin-1 beta-converting enzyme. Cell 75, 641–652
    OpenUrlCrossRefPubMedWeb of Science
    1. Zhang B.,
    2. Gallegos M.,
    3. Puoti A.,
    4. Durkin E.,
    5. Fields S.,
    6. Kimble J.,
    7. Wickens M. P.
    (1997) A conserved RNA-binding protein that regulates sexual fates in the C. elegans hermaphrodite germ line. Nature 390, 477–484
    OpenUrlCrossRefPubMed
    1. Zhou Y.,
    2. King M. L.
    (1996) Localization of Xcat-2 RNA, a putative germ plasm component, to the mitochondrial cloud in Xenopus stage I oocytes. Development 122, 2947–2953
    OpenUrlAbstract
Previous ArticleNext Article
Back to top
Previous ArticleNext Article

This Issue

 Download PDF

Email

Thank you for your interest in spreading the word on Development.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
nos-1 and nos-2, two genes related to Drosophila nanos, regulate primordial germ cell development and survival in Caenorhabditis elegans
(Your Name) has sent you a message from Development
(Your Name) thought you would like to see the Development web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
JOURNAL ARTICLES
nos-1 and nos-2, two genes related to Drosophila nanos, regulate primordial germ cell development and survival in Caenorhabditis elegans
K. Subramaniam, G. Seydoux
Development 1999 126: 4861-4871;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Citation Tools
JOURNAL ARTICLES
nos-1 and nos-2, two genes related to Drosophila nanos, regulate primordial germ cell development and survival in Caenorhabditis elegans
K. Subramaniam, G. Seydoux
Development 1999 126: 4861-4871;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Alerts

Please log in to add an alert for this article.

Sign in to email alerts with your email address

Article navigation

  • Top
  • Article
  • Info & metrics
  • PDF

Related articles

Cited by...

More in this TOC section

  • even skipped is required to produce a trans-acting signal for larval neuroblast proliferation that can be mimicked by ecdysone
  • Groucho augments the repression of multiple Even skipped target genes in establishing parasegment boundaries
  • Axial skeletal patterning in mice lacking all paralogous group 8 Hox genes
Show more JOURNAL ARTICLES

Similar articles

Other journals from The Company of Biologists

Journal of Cell Science

Journal of Experimental Biology

Disease Models & Mechanisms

Biology Open

Advertisement

The Node is looking for a new Community Manager!

If you're interested in science communication, publishing and the developmental biology community, we're hiring for a new Community Manager for our community site, the Node.

The position is an exciting opportunity to develop an already successful and well-known site, engaging with the academic, publishing and online communities. Find out more and how to apply.


Upcoming special issue: call for papers

The Immune System in Development and Regeneration
Guest editors: Florent Ginhoux and Paul Martin
Submission deadline: 1 September 2021
Publication: Spring 2022

The special issue welcomes Review articles as well as Research articles, and will be widely promoted online and at key global conferences.


The people behind the papers - Clément Dubois, Shivam Gupta, Andrew Mugler and Marie-Anne Félix

A new paper investigates the robustness of neuroblast migration in the C. elegans larva in the face of both genetic and environmental variation. In an interview, the paper's four authors tell us more about the story.


Development presents...

Our successful webinar series continues into 2021, with early-career researchers presenting their papers and a chance to virtually network with the developmental biology community afterwards. Every talk is recorded and since launching in August last year, the series has clocked up almost 10k views on YouTube.

Here, Swann Floc'hlay discusses her work modelling dorsal-ventral axis specification in the sea urchin embryo.

Save your spot at our next session:

14 April
Time: 17:00 BST
Chaired by: François Guillemot

12 May
Time: TBC
Chaired by: Paola Arlotta

Join our mailing list to receive news and updates on the series.

Articles

  • Accepted manuscripts
  • Issue in progress
  • Latest complete issue
  • Issue archive
  • Archive by article type
  • Special issues
  • Subject collections
  • Sign up for alerts

About us

  • About Development
  • About the Node
  • Editors and board
  • Editor biographies
  • Travelling Fellowships
  • Grants and funding
  • Journal Meetings
  • Workshops
  • The Company of Biologists

For authors

  • Submit a manuscript
  • Aims and scope
  • Presubmission enquiries
  • Article types
  • Manuscript preparation
  • Cover suggestions
  • Editorial process
  • Promoting your paper
  • Open Access
  • Biology Open transfer

Journal info

  • Journal policies
  • Rights and permissions
  • Media policies
  • Reviewer guide
  • Sign up for alerts

Contact

  • Contact Development
  • Subscriptions
  • Advertising
  • Feedback
  • Institutional usage stats (logged-in users only)

 Twitter   YouTube   LinkedIn

© 2021   The Company of Biologists Ltd   Registered Charity 277992