Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Sign up for alerts
  • About us
    • About Development
    • About the Node
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contacts
    • Subscriptions
    • Feedback
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

User menu

  • Log in
  • Log out

Search

  • Advanced search
Development
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

supporting biologistsinspiring biology

Development

  • Log in
Advanced search

RSS  Twitter  Facebook  YouTube 

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Sign up for alerts
  • About us
    • About Development
    • About the Node
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contacts
    • Subscriptions
    • Feedback
JOURNAL ARTICLES
Engrailed defines the position of dorsal di-mesencephalic boundary by repressing diencephalic fate
I. Araki, H. Nakamura
Development 1999 126: 5127-5135;
I. Araki
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
H. Nakamura
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & metrics
  • PDF
Loading

Summary

Regionalization of a simple neural tube is a fundamental event during the development of central nervous system. To analyze in vivo the molecular mechanisms underlying the development of mesencephalon, we ectopically expressed Engrailed, which is expressed in developing mesencephalon, in the brain of chick embryos by in ovo electroporation. Misexpression of Engrailed caused a rostral shift of the di-mesencephalic boundary, and caused transformation of dorsal diencephalon into tectum, a derivative of dorsal mesencephalon. Ectopic Engrailed rapidly repressed Pax-6, a marker for diencephalon, which preceded the induction of mesencephalon-related genes such as Pax-2, Pax-5, Fgf8, Wnt-1 and EphrinA2. In contrast, a mutant Engrailed, En-2(F51rE), bearing mutation in EH1 domain, which has been shown to interact with a co-repressor, Groucho, did not show the phenotype induced by wild-type Engrailed. Furthermore, VP16-Engrailed chimeric protein, the dominant positive form of Engrailed, caused caudal shift of di-mesencephalic boundary and ectopic Pax-6 expression in mesencephalon. These data suggest that (1) Engrailed defines the position of dorsal di-mesencephalic boundary by directly repressing diencephalic fate, and (2) Engrailed positively regulates the expression of mesencephalon-related genes by repressing the expression of their negative regulator(s).

Reference

    1. Ang S. L.,
    2. Rossant J.
    (1993) Anterior mesendoderm induces mouse Engrailed genes in explant cultures. Development 118, 139–149
    OpenUrlAbstract
    1. Bally-Cuif L.,
    2. Alvarado-Mallart R.-M.,
    3. Darnell D. K.,
    4. Wassef M.
    (1992) Relationship between Wnt-1 and En-2 expression domains during early development of normal and ectopic met-mesencephalon. Development 115, 999–1009
    OpenUrlAbstract
    1. Bally-Cuif L.,
    2. Wassef M.
    (1994) Ectopic induction and regionization of Wnt-1 expression in quail/chick chimeras. Development 120, 3379–3394
    OpenUrlAbstract
    1. Broccoli V.,
    2. Boncinelli E.,
    3. Wurst W.
    (1999) The caudal limit of Otx2 expression positions the isthmic organizer. Nature 401, 164–168
    OpenUrlCrossRefPubMedWeb of Science
    1. Burrill J. D.,
    2. Moran L.,
    3. Goulding M. D.,
    4. Saueressig H.
    (1997) PAX2 is expressed in multiple spinal cord interneurons, including a population of EN1+interneurons that require PAX6 for their development. Development 124, 4493–4503
    OpenUrlAbstract
    1. Chalepakis G.,
    2. Wijnholds J.,
    3. Giese P.,
    4. Schachner M.,
    5. Gruss P.
    (1994) Characterization of Pax-6 and Hoxa-1 binding to the promoter region of the neural cell adhesion molecule L1. DNA Cell. Biol 13, 891–900
    OpenUrlCrossRefPubMedWeb of Science
    1. Crossley P. H.,
    2. Martinez S.,
    3. Martin G. R.
    (1996) Midbrain development induced by FGF8 in the chick embryo. Nature 380, 66–68
    OpenUrlCrossRefPubMed
    1. Dahl E.,
    2. Koseki H.,
    3. Balling R.
    (1997) Pax genes and organogenesis. BioEssays 19, 755–765
    OpenUrlCrossRefPubMedWeb of Science
    1. Danielian P. S.,
    2. McMahon A. P.
    (1996) Engrailed-1 as a target of the Wnt-1 signalling pathway in vertebrate midbrain development. Nature 383, 332–334
    OpenUrlCrossRefPubMedWeb of Science
    1. Darnell D. K.,
    2. Schoenwolf G. C.
    (1997) Vertical induction of engrailed-2 and other region-specific markers in the early chick embryo. Dev Dyn 209, 45–58
    OpenUrlCrossRefPubMed
    1. Davis C. A.,
    2. Holmyard D. P.,
    3. Millen K. J.,
    4. Joyner A. L.
    (1991) Examining pattern formation in mouse, chicken and frog embryos with an En -specific antiserum. Development 111, 287–298
    OpenUrlAbstract
    1. Duncan M. K.,
    2. Haynes J. I. II,
    3. Cvekl A.,
    4. Piatigorsky J.
    (1998) Dual roles for Pax-6: a transcriptional repressor of lens fiber cell-specific-crystallin genes. Mol. Cell. Biol 18, 5579–5586
    OpenUrlAbstract/FREE Full Text
    1. Favor J.,
    2. Sandulache R.,
    3. Neuhäuser-Klaus A.,
    4. Pretsch W.,
    5. Chatterjee B.,
    6. Senft E.,
    7. Wurst W.,
    8. Blanquet V.,
    9. Grimes P.,
    10. Spörle R.,
    11. Schughart K.
    (1996) The mouse Pax-2 1Neumutation is identical to a human PAX2 mutation in a family with renal-coloboma syndrome and results in developmental defects of the brain, ear, eye, and kidney. Proc. Natl. Acad. Sci. USA 93, 13870–13875
    OpenUrlAbstract/FREE Full Text
    1. Flenniken A. M.,
    2. Gale N. W.,
    3. Yancopoulos G. D.,
    4. Wilkinson D. G.
    (1996) Distinct and overlapping expression patterns of ligands for Eph-related receptor tyrosine kinases during mouse embryogenesis. Dev. Biol 179, 382–401
    OpenUrlCrossRefPubMedWeb of Science
    1. Funahashi J.-i.,
    2. Okafuji T.,
    3. Ohuchi H.,
    4. Noji S.,
    5. Tanaka H.,
    6. Nakamura H.
    (1999) The role of Pax-5 in regulation of a mid-hindbrain otganizer's activity. Dev. Growth Differ 41, 59–72
    OpenUrlCrossRefPubMedWeb of Science
    1. García-Porrero J. A.,
    2. Collado J. A.,
    3. Ojeda J. L.
    (1979) Cell death during detachment of the lens rudiment from ectoderm in the chick embryo. Anat. Rec 193, 791–804
    OpenUrlCrossRefPubMed
    1. Gardner C. A.,
    2. Darnell D. K.,
    3. Poole S. J.,
    4. Ordahl C. P.,
    5. Barald K. F.
    (1988) Expression of an engrailed -like gene during development of the early embryonic chick nervous system. J. Neurosci. Res 21, 426–437
    OpenUrlCrossRefPubMedWeb of Science
    1. Gardner C. A.,
    2. Barald K. F.
    (1991) The cellular environment controls the expression of engrailed-like protein in the cranial neuroepithelium of quail-chick chimeric embryos. Development 113, 1037–1048
    OpenUrlAbstract
    1. Gardner C. A.,
    2. Barald K. F.
    (1992) Expression patterns of Engrailed-like proteins in the chick embryo. Dev. Dyn 193, 370–388
    OpenUrlPubMed
    1. Glaser T.,
    2. Walton D. S.,
    3. Maas R. L.
    (1992) Genomic structure, evolutionary conservation and aniridia mutations in the human PAX6 gene. Nature Genet 2, 232–238
    OpenUrlCrossRefPubMedWeb of Science
    1. Glaser T.,
    2. Jepeal L.,
    3. Edwards J. G.,
    4. Young S. R.,
    5. Favor J.,
    6. Maas R. L.
    (1994) PAX6 gene dosage effect in a family with congenital cataracts, aniridia, anophthalmia and central nervous system defects. Nature Genet 7, 463–470
    OpenUrlCrossRefPubMedWeb of Science
    1. Grindley J. C.,
    2. Hargett L. K.,
    3. Hill R. E.,
    4. Ross A.,
    5. Hogan B. L. M.
    (1997) Disruption of PAX6 function in mice homozygous for the Pax6 Sey-1Neumutation produces abnormalities in the early development and regionalization of the diencephalon. Mech. Dev 64, 111–126
    OpenUrlCrossRefPubMedWeb of Science
    1. Hamburgur V.,
    2. Hamilton H. L.
    (1951) A series of normal stages in the development of the chick embryo. J. Morph 88, 49–92
    OpenUrlCrossRefPubMedWeb of Science
    1. Han K.,
    2. Manley J. L.
    (1993) Functional domains of the Drosophila Engrailed protein. EMBO J 12, 2723–2733
    OpenUrlPubMedWeb of Science
    1. Hanks M.,
    2. Wurst W.,
    3. Anson-Cartwright L.,
    4. Auerbach A. B.,
    5. Joyner A. L.
    (1995) Rescue of the En-1 mutant phenotype by replacement of En-1 with En-2. Science 269, 679–682
    OpenUrlAbstract/FREE Full Text
    1. Hanks M. C.,
    2. Loomis C. A.,
    3. Harris E.,
    4. Tong C.-X.,
    5. Anson-Cartwright L.,
    6. Auerbach A.,
    7. Joyner A. L.
    (1998) Drosophilaengrailed can substitute for mouse Engrailed1 function in mid-hindbrain, but not limb development. Development 125, 4521–4530
    OpenUrlAbstract
    1. Hemmati-Brivanlou A.,
    2. Harland R. M.
    (1989) Expression of an engrailed -related protein is induced in the anterior neural ectoderm of early Xenopus embryos. Development 106, 611–617
    OpenUrlAbstract
    1. Hemmati-Brivanlou A.,
    2. Stewart R. M.,
    3. Harland R. M.
    (1990) Region-specific neural induction of an engrailed protein by anterior notochord in Xenopus. Science 250, 800–802
    OpenUrlAbstract/FREE Full Text
    1. Hill R. E.,
    2. Favor J.,
    3. Hogan B. L.,
    4. Ton C. C.,
    5. Saunders G. F.,
    6. Hanson I. M.,
    7. Prosser J.,
    8. Jordan T.,
    9. Hastie N. D.,
    10. van Heyningen V.
    (1991) Mouse Smalleye results from mutations in a paired-like homeobox-containing gene. Nature 354, 522–525
    OpenUrlCrossRefPubMedWeb of Science
    1. Holst B.,
    2. Wang Y.,
    3. Jones F. S.,
    4. Edelman G. M.
    (1997) A binding site for Pax proteins regulates expression of the gene for the neural cell adhesion molecule in the embryonic spinal cord. Proc. Natl. Acad. Sci. USA 94, 1465–1470
    OpenUrlAbstract/FREE Full Text
    1. Itasaki N.,
    2. Nakamura H.
    (1996) A role for gradient en expression in positional specification on the optic tectum. Neuron 16, 55–62
    OpenUrlCrossRefPubMedWeb of Science
    1. Jeffs P.,
    2. Osmond M. A.
    (1992) Segmented pattern of cell death during development of the chick embryo. Anat. Embryol 185, 589–598
    OpenUrlPubMed
    1. Jimenez G.,
    2. Paroush Z.,
    3. Ish-Horowicz D.
    (1997) Groucho acts as a corepressor for a subset of negative regulators, including Hairy and Engrailed. Genes Dev 11, 3072–3082
    OpenUrlAbstract/FREE Full Text
    1. Kawakami A.,
    2. Kimura-Kawakami M.,
    3. Nomura T.,
    4. Fujisawa H.
    (1997) Distributions of PAX6 and PAX7 proteins suggest their involvement in both early and late phases of chick brain development. Mech. Dev 66, 119–130
    OpenUrlCrossRefPubMedWeb of Science
    1. Krauss S.,
    2. Maden M.,
    3. Holder N.,
    4. Wilson S. W.
    (1992) Zebrafish pax[b] is involved in the formation of the midbrain-hindbrain boundary. Nature 360, 87–89
    OpenUrlCrossRefPubMed
    1. Lee S. M.,
    2. Danielian P. S.,
    3. Fritzsch B.,
    4. McMahon A. P.
    (1997) Evidence that FGF8 signalling from the midbrain-hindbrain junction regulates growth and polarity in the developing midbrain. Development 124, 959–969
    OpenUrlAbstract
    1. Li H.-S.,
    2. Yang J.-M.,
    3. Jacobson R. D.,
    4. Pasko D.,
    5. Sundin O.
    (1994) Pax-6 is first expressed in a region of ectoderm anterior to the early neural plate: Implications for stepwise determination of the lens. Dev. Biol 162, 181–194
    OpenUrlCrossRefPubMedWeb of Science
    1. Logan C.,
    2. Hanks S. M.,
    3. Noble-Topham C.,
    4. Nallainathan D.,
    5. Provart N. J.,
    6. Joyner A. L.
    (1992) Cloning and sequence comparison of the mouse, human, and chicken engrailed genes reveal potential functional domains and regulatory regions. Dev. Genet 13, 345–358
    OpenUrlCrossRefPubMedWeb of Science
    1. Logan C.,
    2. Wizenmann. A.,
    3. Drescher U.,
    4. Monschau B.,
    5. Bonhoeffer F.,
    6. Lumsden A.
    (1996) Rostral optic tectum acquires caudal characteristic following ectopic Engrailed expression. Curr. Biol 6, 1006–1014
    OpenUrlCrossRefPubMedWeb of Science
    1. Lun K.,
    2. Brand M.
    (1998). A series of no isthmus (noi) alleles of thezebrafish pax2.1 gene reveals multiple signaling events in development of the midbrain-hindbrain boundary. Development 125, 3049–3062
    OpenUrlAbstract
    1. Maconochie M.,
    2. Nonchev S.,
    3. Morrison A.,
    4. Krumlauf R.
    (1996) Paralogous Hox genes: Function and Regulation. Annu. Rev. Genet 30, 529–556
    OpenUrlCrossRefPubMedWeb of Science
    1. Martínez S.,
    2. Wassef M.,
    3. Alvarado-Mallart R.-M.
    (1991) Induction of a mesencephalic phenotype in the 2-day-old chick prosencephalon is preceded by the early expression of the homeobox gene en. Neuron 6, 971–981
    OpenUrlCrossRefPubMedWeb of Science
    1. McMahon A. P.,
    2. Bradley A.
    (1990) The Wnt-1 (int-1) proto-oncogene is required for development of a large region of the mouse brain. Cell 62, 1073–1085
    OpenUrlCrossRefPubMedWeb of Science
    1. McMahon A. P.,
    2. Joyner A. L.,
    3. Bradley A.,
    4. McMahon J. A.
    (1992). The midbrain-hindbrain phenotype of Wnt-1 -/ Wnt-1 -mice results from stepwise deletion of engrailed -expressing cells by 9.5 days postcoitum. Cell 69, 581–595
    OpenUrlCrossRefPubMedWeb of Science
    1. Meech R.,
    2. Kallunki P.,
    3. Edelman G. M.,
    4. Jones F. S.
    (1999) A binding site for homeodomain and Pax proteins is necessary for L1 cell adhesion molecule gene expression by Pax-6 and bone morphogenetic proteins. Proc. Natl. Acad. Sci. USA 96, 2420–2425
    OpenUrlAbstract/FREE Full Text
    1. Millet S.,
    2. Bloch-Gallego E.,
    3. Simeone A.,
    4. Alvarado-Mallart R.-M.
    (1996) The caudal limit of Otx2 gene expression as a marker of the midbrain/hindbrain boundary: a study using in situ hybridization and chick/quail homotopic grafts. Development 122, 3785–3797
    OpenUrlAbstract
    1. Millet S.,
    2. Campbell K.,
    3. Epstein D. J.,
    4. Losos K.,
    5. Harris E.,
    6. Joyner A. L.
    (1999) A role for Gbx2 in repression of Otx2 and positioning the mid/hindbrain organizer. Nature 401, 161–164
    OpenUrlCrossRefPubMedWeb of Science
    1. Moriyoshi K.,
    2. Richards L. J.,
    3. Akazawa C.,
    4. O'Leary D. D. M.,
    5. Nakanishi S.
    (1996) Labeling neural cells using adenoviral gene transfer of membrane-targeted GFP. Neuron 16, 255–260
    OpenUrlCrossRefPubMedWeb of Science
    1. Nakamura H.,
    2. Nakano K. E.,
    3. Igawa H. H.,
    4. Matsui K. A.,
    5. Fujisawa H.
    (1986) Plasticity and rigidity of differentiation of brain vesicles studied in quail-chick chimeras. Cell Differ 19, 187–193
    OpenUrlCrossRefPubMedWeb of Science
    1. Niwa H.,
    2. Yamanura K.,
    3. Miyazaki J.
    (1991) Efficient selection for high-expression transfectants with a novel eukaryotic vector. Gene 108, 193–200
    OpenUrlCrossRefPubMedWeb of Science
    1. Patel N. H.,
    2. Martin-Blanco E.,
    3. Coleman K. G.,
    4. Poole S. J.,
    5. Ellis M. C.,
    6. Kornberg T. B.,
    7. Goodman C. S.
    (1989) Expression of engrailed proteins in arthropods, annelids, and chordates. Cell 58, 955–968
    OpenUrlCrossRefPubMedWeb of Science
    1. Plaza S.,
    2. Dozier C.,
    3. Saule S.
    (1993) Quail PAX-6 (PAX-QNR) encodes a transcription factor able to bind and trans -activate its own promoter. Cell Growth Differ 4, 1041–1050
    OpenUrlAbstract
    1. Plaza S.,
    2. Langlois M.-C.,
    3. Turque N.,
    4. LeCornet S.,
    5. Bailly M.,
    6. Begue A.,
    7. Quatannens B.,
    8. Dozier C.,
    9. Saule S.
    (1997) The homeobox-containing Engrailed (En-1) product down-regulates the expression of Pax-6 through a DNA binding-independent mechanism. Cell Growth Differ 8, 1115–1125
    OpenUrlAbstract
    1. Reifers F.,
    2. Böhli H.,
    3. Walsh E. C.,
    4. Crossley P. H.,
    5. Stainier D. Y. R.,
    6. Brand M.
    (1998) Fgf8 is mutated in zebrafish acerebellar (ace) mutants and is required for maintenance of midbrain-hindbrain boundary development and somitogenesis. Development 125, 2381–2395
    OpenUrlAbstract
    1. Rubenstein J. L. R.,
    2. Martinez S.,
    3. Shimamura K.,
    4. Puelles L.
    (1994) The embryonic vertebrate forebrain: The prosomeric model. Science 266, 578–580
    OpenUrlFREE Full Text
    1. Saenz-Robles M. T.,
    2. Maschat F.,
    3. Tabata T.,
    4. Scott M. P.,
    5. Kornberg T. B.
    (1995) Selection and characterization of sequences with high affinity for the engrailed protein of Drosophila. Mech. Dev 53, 185–195
    OpenUrlCrossRefPubMed
    1. Schwartz C.,
    2. Locke J.,
    3. Nishida C.,
    4. Kornberg T. B.
    (1995) Analysis of cubitusinterruptus regulation in Drosophila embryos and imaginal disks. Development 121, 1626–1635
    OpenUrl
    1. Schwartz M.,
    2. Alvarez-Bolado G.,
    3. Urbanek P.,
    4. Busslinger M.,
    5. Gruss P.
    (1997) Conserved biological function between Pax-2 and Pax-5 inmidbrain and cerebellum development: Evidence from targeted mutations. Proc. Natl. Acad. Sci. USA 94, 14518–14523
    OpenUrlAbstract/FREE Full Text
    1. Serrano N.,
    2. Brock W. H.,
    3. Maschat F.
    (1997) 3-tubulin is directly repressed by the Engrailed protein in Drosophila. Development 124, 2527–2536
    OpenUrlAbstract
    1. Serrano N.,
    2. Maschat F.
    (1998) Molecular mechanism of polyhomeotic activation by Engrailed. EMBO J 17, 3704–3713
    OpenUrlCrossRefPubMedWeb of Science
    1. Shamim H.,
    2. Mahmood R.,
    3. Logan C.,
    4. Doherty P.,
    5. Lumsden A.,
    6. Mason I.
    (1999) Sequential roles for Fgf4, En1 and Fgf8 in specification and regionalisation of the midbrain. Development 126, 945–959
    OpenUrlAbstract
    1. Shigetani Y.,
    2. Funahashi J.,
    3. Nakamura H.
    (1997) En-2 regulates the expression of the ligands for Eph type tyrosine kinases in chick embryonic tectum. Neurosci. Res 27, 211–217
    OpenUrlCrossRefPubMedWeb of Science
    1. Siegler M. V. S.,
    2. Jia X. X.
    (1999) Engrailed negatively regulates the expression of cell adhesion molecules Connectin and Neuroglian in embryonic Drosophila nervous system. Neuron 22, 265–276
    OpenUrlCrossRefPubMedWeb of Science
    1. Smith S. T.,
    2. Jaynes J. B.
    (1996) A conserved region of engrailed, shared among all en-, gsc-, Nk1-, Nk2-and msh-class homeoproteins, mediates active transcriptional repression in vivo. Development 122, 3141–3150
    OpenUrlAbstract
    1. Song D.-L.,
    2. Chalepakis G.,
    3. Gruss P.,
    4. Joyner A. L.
    (1996) Two Pax-binding sites are required for early embryonic brain expression of an Engrailed-2 transgene. Development 122, 627–635
    OpenUrlAbstract
    1. Stoykova A.,
    2. Götz M.,
    3. Gruss P.,
    4. Price J.
    (1997) Pax6 -dependent regulation of adhesive patterning, R-cadherin expression and boundary formation in developing forebrain. Development 124, 3765–3777
    OpenUrlAbstract
    1. Suemori H.,
    2. Kadokawa Y.,
    3. Goto K.,
    4. Araki I.,
    5. Kondoh H.,
    6. Nakatsuji N.
    (1990) A mouse embryonic stem cell line showing pluripotency of differentiation in early embryos and ubiquitous-galactosidase expression. Cell Differ. Dev 29, 181–186
    OpenUrlCrossRefPubMedWeb of Science
    1. Sugiyama S.,
    2. Funahashi J.,
    3. Kitajewski J.,
    4. Nakamura H.
    (1998) Crossregulation between En-2 and Wnt-1 in chick tectal development. Dev. Growth Differ 40, 157–166
    OpenUrlCrossRefPubMed
    1. Thomas K. R.,
    2. Capecchi M. R.
    (1990) Targeted disruption of the murine int-1 proto-oncogene resulting in severe abnormalities in midbrain and cerebellar development. Nature 346, 847–850
    OpenUrlCrossRefPubMedWeb of Science
    1. Thomas K. R.,
    2. Musci T. S.,
    3. Neumann P. E.,
    4. Capecchi. M. R.
    (1991) Swaying is a mutant allele of the proto-oncogene Wnt-1. Cell 67, 969–976
    OpenUrlCrossRefPubMedWeb of Science
    1. Tolkunova E. N.,
    2. Fujioka M.,
    3. Kobayashi M.,
    4. Deka D.,
    5. Jaynes J. B.
    (1998) Two distinct types of repression domain in Engrailed: one interacts with Groucho corepressor and is preferentially active on integrated target genes. Mol. Cell. Biol 18, 2804–2814
    OpenUrlAbstract/FREE Full Text
    1. Triezenberg S. J.,
    2. Kingsbury R. C.,
    3. McKnight S. L.
    (1988) Functional dissection of VP16, the trans -activator of herpes simplex virus immediate early gene expression. Genes Dev 2, 718–729
    OpenUrlAbstract/FREE Full Text
    1. Urbanek P.,
    2. Wang Z. Q.,
    3. Fetka I.,
    4. Wagner E. F.,
    5. Busslinger M.
    (1994) Complete block of early B cell differentiation and altered patterning of the posterior midbrain in mice lacking Pax-5/BSAP. Cell 79, 901–912
    OpenUrlCrossRefPubMedWeb of Science
    1. Urbanek P.,
    2. Fetka I.,
    3. Meisler M. H.,
    4. Busslinger M.
    (1997) Cooperation of Pax2 and Pax5 in midbrain and cerebellum development. Proc. Natl. Acad. Sci. USA 94, 5703–5708
    OpenUrlAbstract/FREE Full Text
    1. Wakamatsu Y.,
    2. Watanabe Y.,
    3. Nakamura H.,
    4. Kondoh H.
    (1997) Regulation of the neural crest cell fate by N-myc: promotion of ventral migration and neuronal differentiation. Development 124, 1953–1962
    OpenUrlAbstract
    1. Warren N.,
    2. Price D. J.
    (1997) Roles of Pax-6 in murine diencephalic development. Development 124, 1573–1582
    OpenUrlAbstract
    1. Wurst W.,
    2. Auerbach A. B.,
    3. Joyner A. L.
    (1994) Multiple developmental defects in Engrailed-1 mutant mice: an early mid-hindbrain deletion and patterning defects in forelimbs and sternum. Development 120, 2065–2075
    OpenUrlAbstract
    1. Xu Q.,
    2. Alldus G.,
    3. Holder N.,
    4. Wilkinson D. G.
    (1995) Expression of truncated Sek-1 receptor tyrosine kinase disrupts the segmental restriction of gene expression in the Xenopus and zebrafish hindbrain. Development 121, 4005–4016
    OpenUrlAbstract
Previous ArticleNext Article
Back to top
Previous ArticleNext Article

This Issue

 Download PDF

Email

Thank you for your interest in spreading the word on Development.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Engrailed defines the position of dorsal di-mesencephalic boundary by repressing diencephalic fate
(Your Name) has sent you a message from Development
(Your Name) thought you would like to see the Development web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
JOURNAL ARTICLES
Engrailed defines the position of dorsal di-mesencephalic boundary by repressing diencephalic fate
I. Araki, H. Nakamura
Development 1999 126: 5127-5135;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Citation Tools
JOURNAL ARTICLES
Engrailed defines the position of dorsal di-mesencephalic boundary by repressing diencephalic fate
I. Araki, H. Nakamura
Development 1999 126: 5127-5135;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Alerts

Please log in to add an alert for this article.

Sign in to email alerts with your email address

Article navigation

  • Top
  • Article
  • Info & metrics
  • PDF

Related articles

Cited by...

More in this TOC section

  • A BAC transgenic analysis of the Mrf4/Myf5 locus reveals interdigitated elements that control activation and maintenance of gene expression during muscle development
  • Visualization and functional characterization of the developing murine cardiac conduction system
  • Indian hedgehog activates hematopoiesis and vasculogenesis and can respecify prospective neurectodermal cell fate in the mouse embryo
Show more JOURNAL ARTICLES

Similar articles

Other journals from The Company of Biologists

Journal of Cell Science

Journal of Experimental Biology

Disease Models & Mechanisms

Biology Open

Advertisement

Kathryn Virginia Anderson (1952-2020)

Developmental geneticist Kathryn Anderson passed away at home on 30 November 2020. Tamara Caspary, a former postdoc and friend, remembers Kathryn and her remarkable contribution to developmental biology.


Zooming into 2021

In a new Editorial, Editor-in-Chief James Briscoe and Executive Editor Katherine Brown reflect on the triumphs and tribulations of the last 12 months, and look towards a hopefully calmer and more predictable year.


Read & Publish participation extends worldwide

Over 60 institutions in 12 countries are now participating in our Read & Publish initiative. Here, James Briscoe explains what this means for his institution, The Francis Crick Institute. Find out more and view our full list of participating institutions.


Upcoming special issues

Imaging Development, Stem Cells and Regeneration
Submission deadline: 30 March 2021
Publication: mid-2021

The Immune System in Development and Regeneration
Guest editors: Florent Ginhoux and Paul Martin
Submission deadline: 1 September 2021
Publication: Spring 2022

Both special issues welcome Review articles as well as Research articles, and will be widely promoted online and at key global conferences.


Development presents...

Our successful webinar series continues into 2021, with early-career researchers presenting their papers and a chance to virtually network with the developmental biology community afterwards. Sign up to join our next session:

10 February
Time: 13:00 (GMT)
Chaired by: preLights

Articles

  • Accepted manuscripts
  • Issue in progress
  • Latest complete issue
  • Issue archive
  • Archive by article type
  • Special issues
  • Subject collections
  • Sign up for alerts

About us

  • About Development
  • About the Node
  • Editors and board
  • Editor biographies
  • Travelling Fellowships
  • Grants and funding
  • Journal Meetings
  • Workshops
  • The Company of Biologists

For authors

  • Submit a manuscript
  • Aims and scope
  • Presubmission enquiries
  • Article types
  • Manuscript preparation
  • Cover suggestions
  • Editorial process
  • Promoting your paper
  • Open Access
  • Biology Open transfer

Journal info

  • Journal policies
  • Rights and permissions
  • Media policies
  • Reviewer guide
  • Sign up for alerts

Contact

  • Contact Development
  • Subscriptions
  • Advertising
  • Feedback

 Twitter   YouTube   LinkedIn

© 2021   The Company of Biologists Ltd   Registered Charity 277992