Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Sign up for alerts
  • About us
    • About Development
    • About the Node
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contacts
    • Subscriptions
    • Feedback
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

User menu

  • Log in
  • Log out

Search

  • Advanced search
Development
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

supporting biologistsinspiring biology

Development

  • Log in
Advanced search

RSS  Twitter  Facebook  YouTube 

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Sign up for alerts
  • About us
    • About Development
    • About the Node
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contacts
    • Subscriptions
    • Feedback
JOURNAL ARTICLES
Pax1 and Pax9 synergistically regulate vertebral column development
H. Peters, B. Wilm, N. Sakai, K. Imai, R. Maas, R. Balling
Development 1999 126: 5399-5408;
H. Peters
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
B. Wilm
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
N. Sakai
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
K. Imai
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
R. Maas
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
R. Balling
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & metrics
  • PDF
Loading

Summary

The paralogous genes Pax1 and Pax9 constitute one group within the vertebrate Pax gene family. They encode closely related transcription factors and are expressed in similar patterns during mouse embryogenesis, suggesting that Pax1 and Pax9 act in similar developmental pathways. We have recently shown that mice homozygous for a defined Pax1 null allele exhibit morphological abnormalities of the axial skeleton, which is not affected in homozygous Pax9 mutants. To investigate a potential interaction of the two genes, we analysed Pax1/Pax9 double mutant mice. These mutants completely lack the medial derivatives of the sclerotomes, the vertebral bodies, intervertebral discs and the proximal parts of the ribs. This phenotype is much more severe than that of Pax1 single homozygous mutants. In contrast, the neural arches, which are derived from the lateral regions of the sclerotomes, are formed. The analysis of Pax9 expression in compound mutants indicates that both spatial expansion and upregulation of Pax9 expression account for its compensatory function during sclerotome development in the absence of Pax1. In Pax1/Pax9 double homozygous mutants, formation and anteroposterior polarity of sclerotomes, as well as induction of a chondrocyte-specific cell lineage, appear normal. However, instead of a segmental arrangement of vertebrae and intervertebral disc anlagen, a loose mesenchyme surrounding the notochord is formed. The gradual loss of Sox9 and Collagen II expression in this mesenchyme indicates that the sclerotomes are prevented from undergoing chondrogenesis. The first detectable defect is a low rate of cell proliferation in the ventromedial regions of the sclerotomes after sclerotome formation but before mesenchymal condensation normally occurs. At later stages, an increased number of cells undergoing apoptosis further reduces the area normally forming vertebrae and intervertebral discs. Our results reveal functional redundancy between Pax1 and Pax9 during vertebral column development and identify an early role of Pax1 and Pax9 in the control of cell proliferation during early sclerotome development. In addition, our data indicate that the development of medial and lateral elements of vertebrae is regulated by distinct genetic pathways.

Reference

    1. Balling R.,
    2. Deutsch U.,
    3. Gruss P.
    (1988) undulated, a mutation affecting the development of the mouse skeleton, has a point mutation in the paired box of Pax-1. Cell 55, 531–535
    OpenUrlCrossRefPubMedWeb of Science
    1. Bell D. M.,
    2. Leung K. K.,
    3. Wheatley S. C.,
    4. Ng L. J.,
    5. Zhou S.,
    6. Ling K. W.,
    7. Sham M. H.,
    8. Koopman P.,
    9. Tam P. P.,
    10. Cheah K. S.
    (1997) SOX9 directly regulates the type-II collagen gene. Nat. Genet 16, 174–178
    OpenUrlCrossRefPubMedWeb of Science
    1. Bernasconi M.,
    2. Remppis A.,
    3. Fredericks W. J.,
    4. Rauscher F. J. 3rd,
    5. Schafer B. W.
    (1996) Induction of apoptosis in rhabdomyosarcoma cells through down-regulation of PAX proteins. Proc. Natl. Acad. Sci. USA 93, 13164–13169
    OpenUrlAbstract/FREE Full Text
    1. Bi W.,
    2. Deng J. M.,
    3. Zhang Z.,
    4. Behringer R. R.,
    5. de Crombrugghe B.
    (1999) Sox9 is required for cartilage formation. Nat. Genet 22, 85–89
    OpenUrlCrossRefPubMedWeb of Science
    1. Borycki A. G.,
    2. Li J.,
    3. Jin F.,
    4. Emerson C. P.,
    5. Epstein J. A.
    (1999) Pax3 functions in cell survival and in pax7 regulation. Development 126, 1665–1674
    OpenUrlAbstract
    1. Chalepakis G.,
    2. Fritsch R.,
    3. Fickenscher H.,
    4. Deutsch U.,
    5. Goulding M.,
    6. Gruss P.
    (1991) The molecular basis of the undulated / Pax-1 mutation. Cell 66, 873–884
    OpenUrlCrossRefPubMedWeb of Science
    1. Chiang C.,
    2. Litingtung Y.,
    3. Lee E.,
    4. Young K. E.,
    5. Corden J. L.,
    6. Westphal H.,
    7. Beachy P. A.
    (1996) Cyclopia and defective axial patterning in mice lacking Sonichedgehog gene function. Nature 383, 407–413
    OpenUrlCrossRefPubMedWeb of Science
    1. Christ B.,
    2. Ordahl C. P.
    (1995) Early stages of chick somite development. Anat. Embryol 191, 381–396
    OpenUrlCrossRefPubMed
    1. Christ B.,
    2. Wilting J.
    (1992) From somites to vertebral column. Anat. Anz 174, 23–32
    OpenUrlPubMedWeb of Science
    1. Christ B.,
    2. Schmidt C.,
    3. Huang R.,
    4. Wilting J.,
    5. Brand-Saberi B.
    (1998) Segmentation of the vertebrate body. Anat. Embryol 197, 1–8
    OpenUrlPubMed
    1. Czerny T.,
    2. Schaffner G.,
    3. Busslinger M.
    (1993) DNA sequence recognition by Pax proteins: bipartite structure of the paired domain and its binding site. Genes Dev 10, 2048–2061
    OpenUrl
    1. Dahl E.,
    2. Koseki H.,
    3. Balling R.
    (1997) Pax genes and organogenesis. BioEssays 19, 755–765
    OpenUrlCrossRefPubMedWeb of Science
    1. Deutsch U.,
    2. Dressler G. R.,
    3. Gruss P.
    (1988) Pax-1, a member of a paired box homologous murine gene family, is expressed in segmented structures during development. Cell 53, 617–625
    OpenUrlCrossRefPubMedWeb of Science
    1. Dietrich S.,
    2. Gruss P.
    (1995) undulated phenotypes suggest a role of Pax-1 for the development of vertebral and extravertebral structures. Dev. Biol 167, 529–548
    OpenUrlCrossRefPubMedWeb of Science
    1. Dietrich S.,
    2. Schubert F. R.,
    3. Gruss P.
    (1993) Altered Pax gene expression in murine notochord mutants: the notochord is required to initiate and maintain ventral identity in the somite. Mech. Dev 44, 189–207
    OpenUrlCrossRefPubMedWeb of Science
    1. Ebensperger C.,
    2. Wilting J.,
    3. Brand-Saberi B.,
    4. Mizutani Y.,
    5. Christ B.,
    6. Balling R.,
    7. Koseki H.
    (1995) Pax-1, a regulator of sclerotome development is induced by notochord and floor plate signals in avian embryos. Anat. Embryol 191, 297–310
    OpenUrlCrossRefPubMed
    1. Fan C. M.,
    2. Tessier-Lavigne M.
    (1994) Patterning of mammalian somites by surface ectoderm and notochord: evidence for sclerotome induction by a hedgehog homolog. Cell 79, 1175–1186
    OpenUrlCrossRefPubMedWeb of Science
    1. Gnarra J. R.,
    2. Dressler G. R.
    (1995) Expression of Pax-2 in human renal cell carcinoma and growth inhibition by antisense oligonucleotides. Cancer Res 55, 4092–4098
    OpenUrlAbstract/FREE Full Text
    1. Goulding M.,
    2. Lumsden A.,
    3. Paquette A. J.
    (1994) Regulation of Pax-3 expression in the dermomyotome and its role in muscle development. Development 120, 957–971
    OpenUrlAbstract
    1. Gruneberg H.
    (1954) Genetical studies on the skeleton of the mouse. XII. The development of undulated. J. Genet 52, 441–455
    OpenUrl
    1. Hall B. K.,
    2. Miyake T.
    (1992) The membranous skeleton: the role of cell condensations in vertebrate skeletogenesis. Anat. Embryol 186, 107–124
    OpenUrlPubMed
    1. Hall B. K.,
    2. Miyake T.
    (1995) Divide, accumulate, differentiate: cell condensation in skeletal development revisited. Int. J. Dev. Biol 39, 881–893
    OpenUrlPubMedWeb of Science
    1. Hewitt S. M.,
    2. Hamada S.,
    3. Monarres A.,
    4. Kottical L. V.,
    5. Saunders G. F.,
    6. McDonnell T. J.
    (1997) Transcriptional activation of the bcl-2 apoptosis suppressor gene by the paired box transcription factor PAX8. Anticancer Res 17, 3211–3215
    OpenUrlPubMedWeb of Science
    1. Johnson R. L.,
    2. Laufer E.,
    3. Riddle R. D.,
    4. Tabin C.
    (1994) Ectopic expression of Sonic hedgehog alters dorsal-ventral patterning of somites. Cell 79, 1165–1173
    OpenUrlCrossRefPubMedWeb of Science
    1. Kessel M.,
    2. Balling R.,
    3. Gruss P.
    (1990). Variations of cervical certebrae after expression of a Hox-1.1 transgene in mice. Cell 61, 301–308
    OpenUrlCrossRefPubMedWeb of Science
    1. Keynes R. J.,
    2. Stern C. D.
    (1988) Mechanisms of vertebrate segmentation. Development 103, 413–429
    OpenUrlPubMedWeb of Science
    1. Koseki H.,
    2. Wallin J.,
    3. Wilting J.,
    4. Mitzutani Y.,
    5. Kispert A.,
    6. Ebensperger C.,
    7. Herrmann B. G.,
    8. Christ B.,
    9. Balling R.
    (1993) A role for Pax-1 as a mediator of notochordal signals during the dorsoventral specification of vertebrae. Development 119, 649–660
    OpenUrlAbstract/FREE Full Text
    1. Kravis D.,
    2. Upholt W. B.
    (1985) Quantitation of type II procollagen mRNA levels during chick limb cartilage differentiation. Dev. Biol 108, 164–172
    OpenUrlCrossRefPubMed
    1. Li S. W.,
    2. Prockop D. J.,
    3. Helminen H.,
    4. Fassler R.,
    5. Lapvetelainen T.,
    6. Kiraly K.,
    7. Peltarri A.,
    8. Arokoski J.,
    9. Lui H.,
    10. Arita M.,
    11. Khillan J. S.
    (1995) Transgenic mice with targeted inactivation of the Col2 alpha 1 gene for collagen II develop a skeleton with membranous and periosteal bone but no endochondral bone. Genes Dev 9, 2821–2830
    OpenUrlAbstract/FREE Full Text
    1. Lu M. F.,
    2. Cheng H. T.,
    3. Kern M. J.,
    4. Potter S. S.,
    5. Tran B.,
    6. Diekwisch T. G.,
    7. Martin J. F.
    (1999) prx-1 functions cooperatively with another paired-related homeobox gene, prx-2, to maintain cell fates within the craniofacial mesenchyme. Development 126, 495–504
    OpenUrlAbstract
    1. Mansouri A.,
    2. Gruss P.
    (1998) Pax3 and Pax7 are expressed in commissural neurons and restrict ventral neuronal identity in the spinal cord. Mech. Dev 78, 171–178
    OpenUrlCrossRefPubMedWeb of Science
    1. Mansouri A.,
    2. Yokota Y.,
    3. Wehr R.,
    4. Copeland N. G.,
    5. Jenkins N. A.,
    6. Gruss P.
    (1997) Paired-related murine homeobox gene expressed in the developing sclerotome, kidney, and nervous system. Dev. Dyn 210, 53–65
    OpenUrlCrossRefPubMed
    1. Maulbecker C. C.,
    2. Gruss P.
    (1993) The oncogenic potential of Pax genes. EMBO J 12, 2361–2367
    OpenUrlPubMedWeb of Science
    1. Metsaranta M.,
    2. Toman D.,
    3. de Combrugghe B.,
    4. Vuorio E.
    (1991) Specific hybridization probes for mouse type I, II, III an IX collagen mRNAs. Biochim. Biophys. Acta 1089, 241–243
    OpenUrlPubMed
    1. Mo R.,
    2. Freer A. M.,
    3. Zinyk D. L.,
    4. Crackower M. A.,
    5. Michaud J.,
    6. Heng H. H.,
    7. Chik K. W.,
    8. Shi X. M.,
    9. Tsui L. C.,
    10. Cheng S. H.,
    11. Joyner A. L.,
    12. Hui C.
    (1997) Specific and redundant functions of Gli2 and Gli3 zinc finger genes in skeletal patterning and development. Development 124, 113–123
    OpenUrlAbstract
    1. Monsoro-Burq A. H.,
    2. Bontoux M.,
    3. Teillet M. A.,
    4. Le Douarin N. M.
    (1994) Heterogeneity in the development of the vertebra. Proc. Natl. Acad. Sci. USA 91, 10435–10439
    OpenUrlAbstract/FREE Full Text
    1. Monsoro-Burq A. H.,
    2. Duprez D.,
    3. Watanabe Y.,
    4. Bontoux M.,
    5. Vincent C.,
    6. Brickell P.,
    7. Le Douarin N.
    (1996) The role of bone morphogenetic proteins in vertebral development. Development 122, 3607–3616
    OpenUrlAbstract
    1. Muller T. S.,
    2. Ebensperger C.,
    3. Neubuser A.,
    4. Koseki H.,
    5. Balling R.,
    6. Christ B.,
    7. Wilting J.
    (1996) Expression of avian Pax1 and Pax9 is intrinsically regulated in the pharyngeal endoderm, but depends on environmental influences in the paraxial mesoderm. Dev. Biol 178, 403–417
    OpenUrlCrossRefPubMedWeb of Science
    1. Murtaugh L. C.,
    2. Chyung J. H.,
    3. Lassar A. B.
    (1999) Sonic hedgehog promotes somitic chondrogenesis by altering the cellular response to BMP signaling. Genes Dev 13, 225–237
    OpenUrlAbstract/FREE Full Text
    1. Neubuser A.,
    2. Koseki H.,
    3. Balling R.
    (1995) Characterization and developmental expression of Pax9, a paired-box-containing gene related to Pax1. Dev. Biol 170, 701–716
    OpenUrlCrossRefPubMedWeb of Science
    1. Noll M.
    (1993) Evolution and role of Pax genes. Curr. Opin. Genet. Dev 3, 595–605
    OpenUrlCrossRefPubMed
    1. Peters H.,
    2. Doll U.,
    3. Niessing J.
    (1995) Differential expression of the chicken Pax-1 and Pax-9 gene: in situ hybridization and immunohistochemical analysis. Dev. Dyn 203, 1–16
    OpenUrlPubMedWeb of Science
    1. Peters H.,
    2. Neubuser A.,
    3. Kratochwil K.,
    4. Balling R.
    (1998) Pax9 -deficient mice lack pharyngeal pouch derivatives and teeth and exhibit craniofacial and limb abnormalities. Genes Dev 12, 2735–2747
    OpenUrlAbstract/FREE Full Text
    1. Pourquie O.,
    2. Coltey M.,
    3. Teillet M. A.,
    4. Ordahl C.,
    5. Le Douarin N. M.
    (1993) Control of dorsoventral patterning of somitic derivatives by notochord and floor plate. Proc. Natl. Acad. Sci. USA 90, 5242–5246
    OpenUrlAbstract/FREE Full Text
    1. Qu S.,
    2. Tucker S. C.,
    3. Zhao Q.,
    4. de Crombrugghe B.,
    5. Wisdom R.
    (1999) Physical and genetic interactions between Alx4 and Cart1. Development 126, 359–269
    OpenUrlAbstract
    1. Rawls A.,
    2. Valdez M. R.,
    3. Zhang W.,
    4. Richardson J.,
    5. Klein W. H.,
    6. Olson E. N.
    (1998) Overlapping functions of the myogenic bHLH genes MRF4 and MyoD revealed in double mutant mice. Development 125, 2349–2358
    OpenUrlAbstract
    1. Rijli F. M.,
    2. Chambon P.
    (1997) Genetic interactions of Hox genes in limb development: learning from compound mutants. Curr. Opin. Genet. Dev 7, 481–487
    OpenUrlCrossRefPubMedWeb of Science
    1. Rossi D. L.,
    2. Acebron A.,
    3. Santisteban P.
    (1995) Function of the homeo and paired domain proteins TTF-1 and Pax-8 in thyroid cell proliferation. J. Biol. Chem 270, 23139–23142
    OpenUrlAbstract/FREE Full Text
    1. Schwarz M.,
    2. Alvarez-Bolado G.,
    3. Urbanek P.,
    4. Busslinger M.,
    5. Gruss P.
    (1997) Conserved biological function between Pax-2 and Pax-5 in midbrain and cerebellum development: evidence from targeted mutations. Proc. Natl. Acad. Sci. U S A 94, 14518–14523
    OpenUrlAbstract/FREE Full Text
    1. Tajbakhsh S.,
    2. Spörle R.
    (1998) Somite development: constructing the vertebrate body. Cell 92, 9–16
    OpenUrlCrossRefPubMed
    1. Teillet M.,
    2. Watanabe Y.,
    3. Jeffs P.,
    4. Duprez D.,
    5. Lapointe F.,
    6. Le Douarin N. M.
    (1998) Sonic hedgehog is required for survival of both myogenic and chondrogenic somitic lineages. Development 125, 2019–2030
    OpenUrlAbstract
    1. ten Berge D.,
    2. Brouwer A.,
    3. Korving J.,
    4. Martin J. F.,
    5. Meijlink F.
    (1998) Prx1 and Prx2 in skeletogenesis: roles in the craniofacial region, inner ear and limbs. Development 125, 3831–3842
    OpenUrl
  1. The ventralizing effect of the notochord on somite differentiation in chick embryos. Anat. Embryol 188, 239–245
    1. Wakatsuki Y.,
    2. Neurath M. F.,
    3. Max E. E.,
    4. Strober W.
    (1994) The B cell-specific transcription factor BSAP regulates B cell proliferation. J. Exp. Med 179, 1099–1108
    OpenUrlAbstract
    1. Wallin J.,
    2. Wilting J.,
    3. Koseki H.,
    4. Fritsch R.,
    5. Christ B.,
    6. Balling R.
    (1994) The role of Pax-1 in axial skeleton development. Development 120, 1109–1121
    OpenUrlCrossRefPubMedWeb of Science
    1. Walther C.,
    2. Guenet J. L.,
    3. Simon D.,
    4. Deutsch U.,
    5. Jostes B.,
    6. Goulding M. D.,
    7. Plachov D.,
    8. Balling R.,
    9. Gruss P.
    (1991) Pax: a murine multigene family of paired box-containing genes. Genomics 11, 424–434
    OpenUrlAbstract
    1. Warren N.,
    2. Price D. J.
    (1997) Roles of Pax-6 in murine diencephalic development. Development 124, 1573–1582
    1. Watterson R. L.,
    2. Fowler I.,
    3. Fowler B. J.
    (1954) The role of the notochord and the neural tube in development of the axial skeleton of the chick. Am. J. Anat 95, 337–400
    OpenUrlAbstract/FREE Full Text
    1. Wilm B.,
    2. Dahl E.,
    3. Peters H.,
    4. Balling R.,
    5. Imai K.
    (1998) Targeted disruption of Pax1 defines its null phenotype and proves haploinsufficiency. Proc. Natl. Acad. Sci. USA 95, 8692–8697
Previous ArticleNext Article
Back to top
Previous ArticleNext Article

This Issue

 Download PDF

Email

Thank you for your interest in spreading the word on Development.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Pax1 and Pax9 synergistically regulate vertebral column development
(Your Name) has sent you a message from Development
(Your Name) thought you would like to see the Development web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
JOURNAL ARTICLES
Pax1 and Pax9 synergistically regulate vertebral column development
H. Peters, B. Wilm, N. Sakai, K. Imai, R. Maas, R. Balling
Development 1999 126: 5399-5408;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Citation Tools
JOURNAL ARTICLES
Pax1 and Pax9 synergistically regulate vertebral column development
H. Peters, B. Wilm, N. Sakai, K. Imai, R. Maas, R. Balling
Development 1999 126: 5399-5408;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Alerts

Please log in to add an alert for this article.

Sign in to email alerts with your email address

Article navigation

  • Top
  • Article
  • Info & metrics
  • PDF

Related articles

Cited by...

More in this TOC section

  • A BAC transgenic analysis of the Mrf4/Myf5 locus reveals interdigitated elements that control activation and maintenance of gene expression during muscle development
  • Visualization and functional characterization of the developing murine cardiac conduction system
  • Indian hedgehog activates hematopoiesis and vasculogenesis and can respecify prospective neurectodermal cell fate in the mouse embryo
Show more JOURNAL ARTICLES

Similar articles

Other journals from The Company of Biologists

Journal of Cell Science

Journal of Experimental Biology

Disease Models & Mechanisms

Biology Open

Advertisement

Kathryn Virginia Anderson (1952-2020)

Developmental geneticist Kathryn Anderson passed away at home on 30 November 2020. Tamara Caspary, a former postdoc and friend, remembers Kathryn and her remarkable contribution to developmental biology.


Zooming into 2021

In a new Editorial, Editor-in-Chief James Briscoe and Executive Editor Katherine Brown reflect on the triumphs and tribulations of the last 12 months, and look towards a hopefully calmer and more predictable year.


Read & Publish participation extends worldwide

Over 60 institutions in 12 countries are now participating in our Read & Publish initiative. Here, James Briscoe explains what this means for his institution, The Francis Crick Institute. Find out more and view our full list of participating institutions.


Upcoming special issues

Imaging Development, Stem Cells and Regeneration
Submission deadline: 30 March 2021
Publication: mid-2021

The Immune System in Development and Regeneration
Guest editors: Florent Ginhoux and Paul Martin
Submission deadline: 1 September 2021
Publication: Spring 2022

Both special issues welcome Review articles as well as Research articles, and will be widely promoted online and at key global conferences.


Development presents...

Our successful webinar series continues into 2021, with early-career researchers presenting their papers and a chance to virtually network with the developmental biology community afterwards. Sign up to join our next session:

10 February
Time: 13:00 (GMT)
Chaired by: preLights

Articles

  • Accepted manuscripts
  • Issue in progress
  • Latest complete issue
  • Issue archive
  • Archive by article type
  • Special issues
  • Subject collections
  • Sign up for alerts

About us

  • About Development
  • About the Node
  • Editors and board
  • Editor biographies
  • Travelling Fellowships
  • Grants and funding
  • Journal Meetings
  • Workshops
  • The Company of Biologists

For authors

  • Submit a manuscript
  • Aims and scope
  • Presubmission enquiries
  • Article types
  • Manuscript preparation
  • Cover suggestions
  • Editorial process
  • Promoting your paper
  • Open Access
  • Biology Open transfer

Journal info

  • Journal policies
  • Rights and permissions
  • Media policies
  • Reviewer guide
  • Sign up for alerts

Contact

  • Contact Development
  • Subscriptions
  • Advertising
  • Feedback

 Twitter   YouTube   LinkedIn

© 2021   The Company of Biologists Ltd   Registered Charity 277992