Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Sign up for alerts
  • About us
    • About Development
    • About the Node
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contacts
    • Subscriptions
    • Advertising
    • Feedback
    • For library administrators
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

User menu

  • Log in
  • Log out

Search

  • Advanced search
Development
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

supporting biologistsinspiring biology

Development

  • Log in
Advanced search

RSS  Twitter  Facebook  YouTube 

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Sign up for alerts
  • About us
    • About Development
    • About the Node
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contacts
    • Subscriptions
    • Advertising
    • Feedback
    • For library administrators
JOURNAL ARTICLES
The transcription factor GATA3 is a downstream effector of Hoxb1 specification in rhombomere 4
I. Pata, M. Studer, J.H. van Doorninck, J. Briscoe, S. Kuuse, J.D. Engel, F. Grosveld, A. Karis
Development 1999 126: 5523-5531;
I. Pata
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M. Studer
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J.H. van Doorninck
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J. Briscoe
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
S. Kuuse
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J.D. Engel
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
F. Grosveld
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
A. Karis
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & metrics
  • PDF
Loading

Summary

In this paper, we show that the transcription factor GATA3 is dynamically expressed during hindbrain development. Function of GATA3 in ventral rhombomere (r) 4 is dependent on functional GATA2, which in turn is under the control of Hoxb1. In particular, the absence of Hoxb1 results in the loss of GATA2 expression in r4 and the absence of GATA2 results in the loss of GATA3 expression. The lack of GATA3 expression in r4 inhibits the projection of contralateral vestibuloacoustic efferent neurons and the migration of facial branchiomotor neurons similar to Hoxb1-deficient mice. Ubiquitous expression of Hoxb1 in the hindbrain induces ectopic expression of GATA2 and GATA3 in ventral r2 and r3. These findings demonstrate that GATA2 and GATA3 lie downstream of Hoxb1 and provide the first example of Hox pathway transcription factors within a defined population of vertebrate motor neurons.

Reference

    1. Auclair F.,
    2. Valdes N.,
    3. Marchand R.
    (1996) Rhombomere-specific origin of branchial and visceral motoneurons of the facial nerve in the rat embryo. J. Comp. Neurol 369, 451–61
    OpenUrlCrossRefPubMedWeb of Science
    1. Barrow J. R.,
    2. Capecchi M. R.
    (1996) Targeted disruption of the Hoxb-2 locus in mice interferes with expression of Hoxb-1 and Hoxb-4. Development 122, 3817–3828
    OpenUrlAbstract
    1. Bell E.,
    2. Wingate R. J.,
    3. Lumsden A.
    (1999) Homeotic transformation of rhombomere identity after localized hoxb1 misexpression. Science 284, 2168–71
    OpenUrlAbstract/FREE Full Text
    1. Briegel K.,
    2. Lim K. C.,
    3. Plank C.,
    4. Beug H.,
    5. Engel J. D.,
    6. Zenke M.
    (1993) Ectopic expression of a conditional GATA-2/estrogen receptor chimera arrests erythroid differentiation in a hormone-dependent manner. Genes Dev 7, 1097–1109
    OpenUrlAbstract/FREE Full Text
    1. Bruce L. L.,
    2. Kingsley J.,
    3. Nichols D. H.,
    4. Fritzsch B.
    (1997) The development of vestibulocochlear efferents and cochlear afferents in mice. Int. J. Dev. Neurosci 15, 671–692
    OpenUrlCrossRefPubMedWeb of Science
    1. Carpenter E. M.,
    2. Goddard J. M.,
    3. Chisaka O.,
    4. Manley N. R.,
    5. Capecchi M. R.
    (1993). Loss of Hox-A1 (Hox-1.6) function results in the reorganization of the murine hindbrain. Development 118, 1063–75
    OpenUrlAbstract/FREE Full Text
    1. Conlon R. A.,
    2. Rossant J.
    (1992) Exogenous retinoic acid rapidly induces anterior ectopic expression of murine Hox-2 genes in vivo. Development 116, 357–68
    OpenUrlAbstract/FREE Full Text
    1. Davenne M.,
    2. Maconochie M. K.,
    3. Neun R.,
    4. Pattyn A.,
    5. Chambon P.,
    6. Krumlauf R.,
    7. Rijli F. M.
    (1999) Hoxa2 and Hoxb2 control dorsoventral patterns of neuronal development in the rostral hindbrain. Neuron 22, 677–91
    OpenUrlCrossRefPubMedWeb of Science
    1. Dolle P.,
    2. Lufkin T.,
    3. Krumlauf R.,
    4. Mark M.,
    5. Duboule D.,
    6. Chambon P.
    (1993). Local alterations of Krox-20 and Hox gene expression in the hindbrain suggest lack of rhombomeres 4 and 5 in homozygote null Hoxa-1 (Hox-1.6) mutant embryos. Proc. Natl. Acad. Sci. USA 90, 7666–70
    OpenUrlAbstract/FREE Full Text
    1. Ericson J.,
    2. Rashbass P.,
    3. Schedl A.,
    4. Brenner-Morton S.,
    5. Kawakami A.,
    6. van Heyningen V.,
    7. Jessell T. M.,
    8. Briscoe J.
    (1997) Pax6 controls progenitor cell identity and neuronal fate in response to graded Shh signaling. Cell 90, 169–180
    OpenUrlCrossRefPubMedWeb of Science
    1. Fritzsch B.,
    2. Christensen M. A.,
    3. Nichols D. H.
    (1993). Fiber pathways and positional changes in efferent perikarya of 2.5-to 7-day chick embryos as revealed with DiI and dextran amines. J. Neurobiol 24, 1481–99
    OpenUrlCrossRefPubMedWeb of Science
    1. George K. M.,
    2. Leonard M. W.,
    3. Roth M. E.,
    4. Lieuw K. H.,
    5. Kioussis D.,
    6. Grosveld F.,
    7. Engel J. D.
    (1994) Embryonic expression and cloning of the murine GATA-3 gene. Development 120, 2673–2686
    OpenUrlAbstract/FREE Full Text
    1. Goddard J. M.,
    2. Rossel M.,
    3. Manley N. R.,
    4. Capecchi M. R.
    (1996) Mice with targeted disruption of Hoxb-1 fail to form the motor nucleus of the VIIth nerve. Development 122, 3217–3228
    OpenUrlAbstract
    1. Hendriks R. W.,
    2. Nawijn M. C.,
    3. Engel J. D.,
    4. van Doorninck H.,
    5. Grosveld F.,
    6. Karis A.
    (1999) Expression of the transcription factor GATA-3 is required for the development of the earliest T cell progenitors and correlates with stages of cellular proliferation in the thymus. Eur. J. Immunol 29, 1912–8
    OpenUrlCrossRefPubMedWeb of Science
    1. Ko L. J.,
    2. Engel J. D.
    (1993) DNA-binding specificities of the GATA transcription factor family. Mol. Cell Biol 13, 4011–4022
    OpenUrlAbstract/FREE Full Text
    1. Kornhauser J. M.,
    2. Leonard M. W.,
    3. Yamamoto M.,
    4. LaVail J. H.,
    5. Mayo K. E.,
    6. Engel J. D.
    (1994) Temporal and spatial changes in GATA transcription factor expression are coincident with development of the chicken optic tectum. Brain Res. Molec. Brain Res 23, 100–110
    OpenUrlPubMed
    1. Koutsourakis M.,
    2. Langeveld A.,
    3. Patient R.,
    4. Beddington R.,
    5. Grosveld F.
    (1999) The transcription factor GATA6 is essential for early extraembryonic development. Development 126, 723–32
    OpenUrlAbstract
    1. Lakshmanan G.,
    2. Lieuw K. H.,
    3. Lim K. C.,
    4. Gu Y.,
    5. Grosveld F.,
    6. Engel J. D.,
    7. Karis A.
    (1999) Localization of distant urogenital system-, central nervous system-, and endocardium-specific transcriptional regulatory elements in the GATA-3 locus. Molec. Cell Biol 19, 1558–68
    OpenUrlAbstract/FREE Full Text
    1. Lieuw K. H.,
    2. Li G. l.,
    3. Zhou Y.,
    4. Grosveld F.,
    5. Engel J. D.
    (1997) Temporal and spatial control of murine GATA-3 transcription by promoter-proximal regulatory elements. Dev. Biol 188, 1–16
    OpenUrlCrossRefPubMedWeb of Science
    1. Lumsden A.,
    2. Krumlauf R.
    (1996) Patterning the vertebrate neuraxis. Science 274, 1109–1115
    OpenUrlAbstract/FREE Full Text
    1. Maconochie M. K.,
    2. Nonchev S.,
    3. Studer M.,
    4. Chan S. K.,
    5. Popperl H.,
    6. Sham M. H.,
    7. Mann R. S.,
    8. Krumlauf R.
    (1997) Cross-regulation in the mouse HoxB complex: the expression of Hoxb2 in rhombomere 4 is regulated by Hoxb1. Genes Dev 11, 1885–1895
    OpenUrlAbstract/FREE Full Text
    1. Mark M.,
    2. Lufkin T.,
    3. Vonesch J. L.,
    4. Ruberte E.,
    5. Olivo J. C.,
    6. Dolle P.,
    7. Gorry P.,
    8. Lumsden A.,
    9. Chambon P.
    (1993) Two rhombomeres are altered in Hoxa-1 mutant mice. Development 119, 319–338
    OpenUrlAbstract
    1. Marshall H.,
    2. Nonchev S.,
    3. Sham M. H.,
    4. Muchamore I.,
    5. Lumsden A.,
    6. Krumlauf R.
    (1992) Retinoic acid alters hindbrain Hox code and induces transformation of rhombomeres 2/3 into a 4/5 identity. Nature 360, 737–741
    OpenUrlCrossRefPubMed
    1. Matise M. P.,
    2. Joyner A. L.
    (1997) Expression patterns of developmental control genes in normal and Engrailed-1 mutant mouse spinal cord reveal early diversity in developing interneurons. J. Neurosci 17, 7805–7816
    OpenUrlAbstract/FREE Full Text
    1. Molkentin J. D.,
    2. Lin Q.,
    3. Duncan S. A.,
    4. Olson E. N.
    (1997) Requirement of the transcription factor GATA4 for heart tube formation and ventral morphogenesis. Genes Dev 11, 1061–1072
    OpenUrlAbstract/FREE Full Text
    1. Murphy P.,
    2. Hill R. E.
    (1991). Expression of the mouse labial-like homeobox-containing genes, Hox 2.9 and Hox 1.6, during segmentation of the hindbrain. Development 111, 61–74
    OpenUrlAbstract
    1. Murphy P.,
    2. Davidson D. R.,
    3. Hill R. E.
    (1989) Segment-specific expression of a homoeobox-containing gene in the mouse hindbrain. Nature 341, 156–159
    OpenUrlCrossRefPubMed
    1. Nagai T.,
    2. Harigae H.,
    3. Ishihara H.,
    4. Motohashi H.,
    5. Minegishi N.,
    6. Tsuchiya S.,
    7. Hayashi N.,
    8. Gu L.,
    9. Andres B.,
    10. Engel J. D.
    (1994) Transcription factor GATA-2 is expressed in erythroid, early myeloid, and CD34+ human leukemia-derived cell lines. Blood 84, 1074–1084
    OpenUrlAbstract/FREE Full Text
    1. Nardelli J.,
    2. Thiesson D.,
    3. Fujiwara Y.,
    4. Tsai F. Y.,
    5. Orkin S. H.
    (1999) Expression and genetic interaction of transcription factors GATA-2 and GATA-3 during development of the mouse central nervous system. Dev. Biol 210, 305–321
    OpenUrlCrossRefPubMedWeb of Science
    1. Pandolfi P. P.,
    2. Roth M. E.,
    3. Karis A.,
    4. Leonard M. W.,
    5. Dzierzak E.,
    6. Grosveld F. G.,
    7. Engel J. D.,
    8. Lindenbaum M. H.
    (1995) Targeted disruption of the GATA3 gene causes severe abnormalities in the nervous system and in fetal liver haematopoiesis. Nat. Genet 11, 40–44
    OpenUrlCrossRefPubMedWeb of Science
    1. Pevny L.,
    2. Lin C. S.,
    3. D'Agati V.,
    4. Simon M. C.,
    5. Orkin S. H.,
    6. Costantini F.
    (1995) Development of hematopoietic cells lacking transcription factor GATA-1. Development 121, 163–172
    OpenUrlAbstract
    1. Pevny L.,
    2. Simon M. C.,
    3. Robertson E.,
    4. Klein W. H.,
    5. Tsai S. F.,
    6. D'Agati V.,
    7. Orkin S. H.,
    8. Costantini F.
    (1991) Erythroid differentiation in chimaeric mice blocked by a targeted mutation in the gene for transcription factor GATA-1. Nature 349, 257–260
    OpenUrlCrossRefPubMed
    1. Pöpperl H.,
    2. Bienz M.,
    3. Studer M.,
    4. Chan S. K.,
    5. Aparicio S.,
    6. Brenner S.,
    7. Mann R. S.,
    8. Krumlauf R.
    (1995) Segmental expression of Hoxb-1 is controlled by a highly conserved autoregulatory loop dependent upon exd/pbx. Cell 81, 1031–1042
    OpenUrlCrossRefPubMedWeb of Science
    1. Simon H.,
    2. Lumsden A.
    (1993) Rhombomere-specific origin of the contralateral vestibulo-acoustic efferent neurons and their migration across the embryonic midline. Neuron 11, 209–220
    OpenUrlCrossRefPubMedWeb of Science
    1. Simon M. C.
    (1995) Gotta have GATA. Nat. Genet 11, 9–11
    OpenUrlCrossRefPubMedWeb of Science
    1. Studer M.,
    2. Gavalas A.,
    3. Marshall H.,
    4. Ariza-McNaughton L.,
    5. Rijli F. M.,
    6. Chambon P.,
    7. Krumlauf R.
    (1998) Genetic interactions between Hoxa1 and Hoxb1 reveal new roles in regulation of early hindbrain patterning. Development 125, 1025–1036
    OpenUrlAbstract
    1. Studer M.,
    2. Lumsden A.,
    3. Ariza-McNaughton L.,
    4. Bradley A.,
    5. Krumlauf R.
    (1996) Altered segmental identity and abnormal migration of motor neurons in mice lacking Hoxb-1. Nature 384, 630–634
    OpenUrlCrossRefPubMed
    1. Ting C. N.,
    2. Olson M. C.,
    3. Barton K. P.,
    4. Leiden J. M.
    (1996) Transcription factor GATA-3 is required for development of the T-cell lineage. Nature 384, 474–478
    OpenUrlCrossRefPubMed
    1. Tsai F. Y.,
    2. Keller G.,
    3. Kuo F. C.,
    4. Weiss M.,
    5. Chen J.,
    6. Rosenblatt M.,
    7. Alt F. W.,
    8. Orkin S. H.
    (1994) An early haematopoietic defect in mice lacking the transcription factor GATA-2. Nature 371, 221–226
    OpenUrlCrossRefPubMed
    1. van Doorninck J. H.,
    2. van der Wees J.,
    3. Karis A.,
    4. Goedknegt E.,
    5. Coesmans M.,
    6. Rutteman M.,
    7. Grosveld F.,
    8. De Zeeuw C. I.
    (1999) GATA-3 is involved in the development of serotonergic neurons in the caudal raphe nuclei. J. Neurosci 12, 1–8
    OpenUrlAbstract
    1. Varela-Echavarria A.,
    2. Pfaff S. L.,
    3. Guthrie S.
    (1996) Differential expression of LIM homeobox genes among motor neuron subpopulations in the developing chick brain stem. Mol. Cell Neurosci 8, 242–257
    OpenUrlCrossRefPubMedWeb of Science
    1. Whyatt D. J.,
    2. de Boer E.,
    3. Grosveld F.
    (1993) The two zinc finger-like domains of GATA-1 have different DNA binding specificities. EMBO J 12, 4993–5005
    OpenUrlPubMedWeb of Science
    1. Yamamoto M.,
    2. Ko L. J.,
    3. Leonard M. W.,
    4. Beug H.,
    5. Orkin S. H.,
    6. Engel J. D.
    (1990) Activity and tissue specific expression of the transcription factor NF-E1 [GATA] multigene family. Genes Dev 4, 1650–1662
    OpenUrlAbstract/FREE Full Text
    1. Zhang M.,
    2. Kim H. J.,
    3. Marshall H.,
    4. Gendron-Maguire M.,
    5. Lucas D. A.,
    6. Baron A.,
    7. Gudas L. J.,
    8. Gridley T.,
    9. Krumlauf R.,
    10. Grippo J. F.
    (1994) Ectopic Hoxa-1 induces rhombomere transformation in mouse hindbrain. Development 120, 2431–2442
    OpenUrlAbstract/FREE Full Text
    1. Zheng W.,
    2. Flavell R. A.
    (1997) The transcription factor GATA-3 is necessary and sufficient for Th2 cytokine gene expression in CD4 T cells. Cell 89, 587–596
    OpenUrlCrossRefPubMedWeb of Science
Previous ArticleNext Article
Back to top
Previous ArticleNext Article

This Issue

 Download PDF

Email

Thank you for your interest in spreading the word on Development.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
The transcription factor GATA3 is a downstream effector of Hoxb1 specification in rhombomere 4
(Your Name) has sent you a message from Development
(Your Name) thought you would like to see the Development web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
JOURNAL ARTICLES
The transcription factor GATA3 is a downstream effector of Hoxb1 specification in rhombomere 4
I. Pata, M. Studer, J.H. van Doorninck, J. Briscoe, S. Kuuse, J.D. Engel, F. Grosveld, A. Karis
Development 1999 126: 5523-5531;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Citation Tools
JOURNAL ARTICLES
The transcription factor GATA3 is a downstream effector of Hoxb1 specification in rhombomere 4
I. Pata, M. Studer, J.H. van Doorninck, J. Briscoe, S. Kuuse, J.D. Engel, F. Grosveld, A. Karis
Development 1999 126: 5523-5531;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Alerts

Please log in to add an alert for this article.

Sign in to email alerts with your email address

Article navigation

  • Top
  • Article
  • Info & metrics
  • PDF

Related articles

Cited by...

More in this TOC section

  • Monofocal origin of telencephalic oligodendrocytes in the anterior entopeduncular area of the chick embryo
  • Genetic dissection of nodal function in patterning the mouse embryo
  • The ASYMMETRIC LEAVES2 gene of Arabidopsis thaliana regulates formation of a symmetric lamina, establishment of venation and repression of meristem-related homeobox genes in leaves
Show more JOURNAL ARTICLES

Similar articles

Other journals from The Company of Biologists

Journal of Cell Science

Journal of Experimental Biology

Disease Models & Mechanisms

Biology Open

Advertisement

The Node is looking for a new Community Manager!

If you're interested in science communication, publishing and the developmental biology community, we're hiring for a new Community Manager for our community site, the Node.

The position is an exciting opportunity to develop an already successful and well-known site, engaging with the academic, publishing and online communities. Find out more and how to apply.


Upcoming special issue: call for papers

The Immune System in Development and Regeneration
Guest editors: Florent Ginhoux and Paul Martin
Submission deadline: 1 September 2021
Publication: Spring 2022

The special issue welcomes Review articles as well as Research articles, and will be widely promoted online and at key global conferences.


The people behind the papers - Clément Dubois, Shivam Gupta, Andrew Mugler and Marie-Anne Félix

A new paper investigates the robustness of neuroblast migration in the C. elegans larva in the face of both genetic and environmental variation. In an interview, the paper's four authors tell us more about the story.


Development presents...

Our successful webinar series continues into 2021, with early-career researchers presenting their papers and a chance to virtually network with the developmental biology community afterwards. Every talk is recorded and since launching in August last year, the series has clocked up almost 10k views on YouTube.

Here, Swann Floc'hlay discusses her work modelling dorsal-ventral axis specification in the sea urchin embryo.

Save your spot at our next session:

14 April
Time: 17:00 BST
Chaired by: François Guillemot

12 May
Time: TBC
Chaired by: Paola Arlotta

Join our mailing list to receive news and updates on the series.

Articles

  • Accepted manuscripts
  • Issue in progress
  • Latest complete issue
  • Issue archive
  • Archive by article type
  • Special issues
  • Subject collections
  • Sign up for alerts

About us

  • About Development
  • About the Node
  • Editors and board
  • Editor biographies
  • Travelling Fellowships
  • Grants and funding
  • Journal Meetings
  • Workshops
  • The Company of Biologists

For authors

  • Submit a manuscript
  • Aims and scope
  • Presubmission enquiries
  • Article types
  • Manuscript preparation
  • Cover suggestions
  • Editorial process
  • Promoting your paper
  • Open Access
  • Biology Open transfer

Journal info

  • Journal policies
  • Rights and permissions
  • Media policies
  • Reviewer guide
  • Sign up for alerts

Contact

  • Contact Development
  • Subscriptions
  • Advertising
  • Feedback
  • Institutional usage stats (logged-in users only)

 Twitter   YouTube   LinkedIn

© 2021   The Company of Biologists Ltd   Registered Charity 277992