Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Accepted manuscripts
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Sign up for alerts
  • About us
    • About Development
    • About the Node
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contacts
    • Subscriptions
    • Advertising
    • Feedback
    • For library administrators
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

User menu

  • Log in
  • Log out

Search

  • Advanced search
Development
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

supporting biologistsinspiring biology

Development

  • Log in
Advanced search

RSS  Twitter  Facebook  YouTube 

  • Home
  • Articles
    • Accepted manuscripts
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Sign up for alerts
  • About us
    • About Development
    • About the Node
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contacts
    • Subscriptions
    • Advertising
    • Feedback
    • For library administrators
JOURNAL ARTICLES
Mash1 regulates neurogenesis in the ventral telencephalon
S. Casarosa, C. Fode, F. Guillemot
Development 1999 126: 525-534;
S. Casarosa
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
C. Fode
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
F. Guillemot
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & metrics
  • PDF
Loading

Summary

Previous studies have shown that mice mutant for the gene Mash1 display severe neuronal losses in the olfactory epithelium and ganglia of the autonomic nervous system, demonstrating a role for Mash1 in development of neuronal lineages in the peripheral nervous system. Here, we have begun to analyse Mash1 function in the central nervous system, focusing our studies on the ventral telencephalon where it is expressed at high levels during neurogenesis. Mash1 mutant mice present a severe loss of progenitors, particularly of neuronal precursors in the subventricular zone of the medial ganglionic eminence. Discrete neuronal populations of the basal ganglia and cerebral cortex are subsequently missing. An analysis of candidate effectors of Mash1 function revealed that the Notch ligands Dll1 and Dll3, and the target of Notch signaling Hes5, fail to be expressed in Mash1 mutant ventral telencephalon. In the lateral ganglionic eminence, loss of Notch signaling activity correlates with premature expression of a number of subventricular zone markers by ventricular zone cells. Therefore, Mash1 is an important regulator of neurogenesis in the ventral telencephalon, where it is required both to specify neuronal precursors and to control the timing of their production.

Reference

    1. Akazawa C.,
    2. Sasai Y.,
    3. Nakanishi S.,
    4. Kageyama R.
    (1992) Molecular characterization of a rat negative regulator with a basic helix-loop-helix structure predominantly expressed in the developing nervous system. J. Biol. Chem 267, 21879–21885
    OpenUrlAbstract/FREE Full Text
    1. Anderson S. A.,
    2. Qiu M.,
    3. Bulfone A.,
    4. Eisenstat D. D.,
    5. Meneses J.,
    6. Pedersen R.,
    7. Rubenstein J. L. R.
    (1997) Mutations of the homeobox genes Dlx-1 and Dlx-2 disrupt the striatal subventricular zone and differentiation of late born striatal neurons. Neuron 19, 27–37
    OpenUrlCrossRefPubMedWeb of Science
    1. Anderson S. A.,
    2. Eisenstat D. D.,
    3. Shi L.,
    4. Rubenstein J. L. R.
    (1997) Interneuron migration from basal forebrain to neocortex: dependence on Dlx genes. Science 278, 474–476
    OpenUrlAbstract/FREE Full Text
    1. Behar T.,
    2. Ma W.,
    3. Hudson L.,
    4. Barker J. L.
    (1994) Analysis of the anatomical distribution of GAD67 mRNA encoding truncated glutamic acid decarboxylase proteins in the embryonic rat brain. Dev. Brain Res 77, 77–87
    OpenUrlCrossRefPubMed
    1. Bettenhausen B.,
    2. Hrabe de Angelis M.,
    3. Simon D.,
    4. Guenet J. L.,
    5. Gossler A.
    (1995) Transient and restricted expression during mouse embryogenesis of Dll1, a murine gene closely related to DrosophilaDelta. Development 121, 2407–2418
    OpenUrlAbstract
    1. Bhide P. G.
    (1996) Cell cycle kinetics in the embryonic mouse corpus striatum. J. Comp. Neurol 374, 506–522
    OpenUrlCrossRefPubMedWeb of Science
    1. Cau E.,
    2. Gradwohl G.,
    3. Fode C.,
    4. Guillemot F.
    (1997) Mash1 activates a cascade of bHLH regulators in olfactory neuron progenitors. Development 124, 1611–1621
    OpenUrlAbstract
    1. Chitnis A.,
    2. Henrique D.,
    3. Lewis J.,
    4. Ish-Horowicz D.,
    5. Kintner C.
    (1995) Primary neurogenesis in Xenopus embryos regulated by a homologue of the Drosophila neurogenic gene Delta. Nature 375, 761–766
    OpenUrlCrossRefPubMedWeb of Science
    1. Chitnis A.,
    2. Kintner C.
    (1996) Sensitivity of proneural genes to lateral inhibition affects the pattern of primary neurons in Xenopus embryos. Development 122, 2295–2301
    OpenUrlAbstract
    1. De Carlos J. A.,
    2. Lopez-Mascaraque L.,
    3. Valverde F.
    (1996) Dynamics of cell migration from the lateral ganglionic eminence in the rat. J. Neurosci 16, 6146–6156
    OpenUrlAbstract/FREE Full Text
    1. Deacon T. W.,
    2. Pakzaban Isacson O.
    (1994) The lateral ganglionic eminence is the origin of cells committed to striatal phenotypes: neural transplantation and developmental evidence. Brain Res 668, 211–219
    OpenUrlCrossRefPubMedWeb of Science
    1. de la Pompa J. L.,
    2. Wakeham A.,
    3. Correia K. M.,
    4. Samper E.,
    5. Brown S.,
    6. Aguilera R. J.,
    7. Nakano T.,
    8. Honjo T.,
    9. Mak T. W.,
    10. Rossant J.,
    11. Conlon R. A.
    (1997) Conservation of the Notch signaling pathway in mammalian neurogenesis. Development 124, 1139–1148
    OpenUrlAbstract
    1. Dunwoodie S. L.,
    2. Henrique D.,
    3. Harrison S. M.,
    4. Beddington R. S. P.
    (1997) Mouse Dll3: a novel divergent Delta gene which may complement the function of other Delta homologues during early pattern formation in the mouse embryo. Development 124, 3065–3076
    OpenUrlAbstract
    1. Fode C.,
    2. Gradwohl G.,
    3. Morin X.,
    4. Dierich A.,
    5. LeMeur M.,
    6. Goridis C.,
    7. Guillemot F.
    (1998) The bHLH protein NEUROGENIN 2 is a determination factor for epibranchial placode-derived sensory neurons. Neuron 20, 483–494
    OpenUrlCrossRefPubMedWeb of Science
    1. Guillemot F.,
    2. Joyner A. L.
    (1993) Dynamic expression of the murine Achaete-Scute homologue Mash-1 in the developing nervous system. Mech. Dev 42, 171–185
    OpenUrlCrossRefPubMedWeb of Science
    1. Guillemot F.,
    2. Lo L. C.,
    3. Johnson J. E.,
    4. Auerbach A.,
    5. Anderson D. J.,
    6. Joyner A. L.
    (1993) Mammalian achaete-scute homolog 1 is required for the early development of olfactory and autonomic neurons. Cell 75, 463–476
    OpenUrlCrossRefPubMedWeb of Science
    1. Halliday A. L.,
    2. Cepko C. L.
    (1992) Generation and migration of cells in the developing striatum. Neuron 9, 15–26
    OpenUrlCrossRefPubMedWeb of Science
    1. Henrique D.,
    2. Hirsinger E.,
    3. Adam J.,
    4. Le Roux I.,
    5. Pourquie O.,
    6. Ish-Horowicz D.,
    7. Lewis J.
    (1997) Maintenance of neuroepithelial progenitor cells by Delta-Notch signaling in the embryonic chick retina. Curr. Biol 7, 661–670
    OpenUrlCrossRefPubMedWeb of Science
    1. Hirsch M.-R.,
    2. Tiveron M.-C.,
    3. Guillemot F.,
    4. Brunet J.-F.,
    5. Goridis C.
    (1998) Control of noradrenergic differentiation and Phox2a expression by MASH1 in the central and peripheral nervous system. Development 125, 599–608
    OpenUrlAbstract
    1. Kageyama R.,
    2. Nakanishi S.
    (1997) Helix-loop-helix factors in growth and differentiation of the vertebrate nervous system. Curr. Opin. Genet. Dev 7, 659–665
    OpenUrlCrossRefPubMedWeb of Science
    1. Kunisch M.,
    2. Haenlin M.,
    3. Campos-Ortega J.
    (1994) Lateral inhibition mediated by the Drosophila neurogenic gene Delta is enhanced by proneural proteins. Proc. Natl. Acad. Sci. USA 91, 10139–10143
    OpenUrlAbstract/FREE Full Text
    1. Lazzaro D.,
    2. Price M.,
    3. DeFelice M.,
    4. Di Lauro R.
    (1991) The transcription factor TTF-1 is expressed at the onset of thyroid and lung morphogenesis and in restricted regions of the foetal forebrain. Development 113, 1093–1104
    OpenUrlAbstract
    1. Lee J. E.
    (1997) Basic helix-loop-helix genes in neural development. Curr. Opin. Neurobiol 7, 13–20
    OpenUrlCrossRefPubMedWeb of Science
    1. Lewis J.
    (1996) Neurogenic genes and vertebrate neurogenesis. Curr. Opin. Neurobiol 6, 3–10
    OpenUrlCrossRefPubMedWeb of Science
    1. Lillien L.
    (1998) Neural progenitors and stem cells: mechanisms of progenitor heterogeneity. Curr. Opin. Neurobiol 8, 37–44
    OpenUrlCrossRefPubMedWeb of Science
    1. Liu J. K.,
    2. Ghattas I.,
    3. Liu S.,
    4. Chen S.,
    5. Rubenstein J. L. R.
    (1997) Dlx genes encode DNA-binding proteins that are expressed in an overlapping and sequential pattern during basal ganglia differentiation. Dev. Dyn 210, 498–512
    OpenUrlCrossRefPubMedWeb of Science
    1. Lo L.-C.,
    2. Johnson J. E.,
    3. Wuenschell C. W.,
    4. Saito T.,
    5. Anderson D. J.
    (1991) Mammalian achaete-scute homolog 1 is transiently expressed by spatially-restricted subsets of early neuroepithelial and neural crest cells. Genes Dev 5, 1524–1537
    OpenUrlAbstract/FREE Full Text
    1. Lo L.-C.,
    2. Sommer L.,
    3. Anderson D. J.
    (1997) MASH-1: maintains competence for BMP2-induced neuronal differentiation in post-migratory neural crest cells. Curr. Biol 7, 440–450
    OpenUrlCrossRefPubMedWeb of Science
    1. Ma Q.,
    2. Chen Z.,
    3. del Barco Barrantes I.,
    4. de la Pompa J. L.,
    5. Anderson D. J.
    (1998) neurogenin1 is essential for the determination of neuronal precursors for proximal cranial sensory ganglia. Neuron 20, 469–482
    OpenUrlCrossRefPubMedWeb of Science
    1. Montmayeur J. P.,
    2. Bausero P.,
    3. Amlaiky N.,
    4. Maroteaux L.,
    5. Hen R.,
    6. Borrelli E.
    (1991) Differential expression of the mouse D2 dopamine receptors isoforms. FEBS Lett 278, 239–243
    OpenUrlCrossRefPubMedWeb of Science
    1. Pearlman A. L.,
    2. Faust P. L.,
    3. Hatten M. E.,
    4. Brunstrom J. E.
    (1998) New directions for neuronal migration. Curr. Opin Neurobiol 8, 45–54
    OpenUrlCrossRefPubMedWeb of Science
    1. Porter F. D.,
    2. Drago J.,
    3. Xu Y.,
    4. Cheema S. S.,
    5. Wassif C.,
    6. Huang S.-P.,
    7. Lee E.,
    8. Grinberg A.,
    9. Massalas J. S.,
    10. Bodine D.,
    11. et al.
    (1997) Lhx2, a LIM homeobox gene is required for eye, forebrain, and definitive erythrocyte development. Development 124, 2935–2944
    OpenUrlAbstract
    1. Porteus M. H.,
    2. Bulfone A.,
    3. Liu J. K.,
    4. Lo L. C.,
    5. Rubenstein J. L. R.
    (1994) DLX-2, MASH-1 and MAP-2 expression and bromodeoxyuridine incorporation define molecularly distinct cell populations in the embryonic mouse forebrain. J. Neurosci 44, 6370–6383
    1. Price M.,
    2. Lemaistre M.,
    3. Pischetola M.,
    4. Di Lauro R.,
    5. Duboule D.
    (1991) A mouse gene related to Distal-less shows a restricted expression in the developping forebrain. Nature 351, 748–751
    OpenUrlCrossRefPubMed
    1. Puelles L.,
    2. Rubenstein J. L. R.
    (1993) Expression patterns of homeobox and other putative regulatory genes in the embryonic mouse forebrain suggest a neuromeric organization. Trends Neurosci 16, 472–479
    OpenUrlCrossRefPubMedWeb of Science
    1. Rubenstein J. L. R.,
    2. Shimamura K.,
    3. Martinez S.,
    4. Puelles L.
    (1998) Regionalization of the prosencephalic neural plate. Annu. Rev. Neurosci 21, 445–477
    OpenUrlCrossRefPubMedWeb of Science
    1. Shimamura K.,
    2. Hartigan D. J.,
    3. Martinez S.,
    4. Puelles L.,
    5. Rubenstein J. L. R.
    (1995) Longitudinal organization of the anterior neural plate and neural tube. Development 121, 3923–3933
    OpenUrlAbstract
    1. Simeone A.,
    2. Acampora D.,
    3. Pannese M.,
    4. D'Esposito M.,
    5. Stornaiuolo A.,
    6. Gulisano M.,
    7. Mallamaci A.,
    8. Kastury K.,
    9. Druck T.,
    10. Huebner K.,
    11. et al.
    (1994) Cloning and characterization of two members of the vertebrate Dlx gene family. Proc. Natl. Acad. Sci. USA 15, 2250–2254
    1. Simpson P.
    (1997) Notch signalling in development: on equivalence groups and asymmetric developmental potential. Curr. Opin. Genet. Dev 7, 537–542
    OpenUrlCrossRefPubMedWeb of Science
    1. Smart I. H. M.
    (1976) A pilot study of cell production by the ganglionic eminences of the developing mouse brain. J. Anat 121, 71–84
    OpenUrlPubMedWeb of Science
    1. Sommer L.,
    2. Shah N.,
    3. Rao M.,
    4. Anderson D. J.
    (1995) The cellular function of MASH1 in autonomic neurogenesis. Neuron 15, 1245–1258
    OpenUrlCrossRefPubMedWeb of Science
    1. Song D. D.,
    2. Harlan R. E.
    (1994) The development of enkephalin and substance P neurons in the basal ganglia: insights into neostriatal compartments and the extended amygdala. Dev. Brain Res 83, 247–261
    OpenUrlPubMed
    1. Stein R.,
    2. Mori N.,
    3. Matthews K.,
    4. Lo L.-C.,
    5. Anderson D. J.
    (1988) The NGF-inducible SCG10 mRNA encodes a novel membrane-bound protein present in growth cones and abundant in developing neurons. Neuron 1, 463–476
    OpenUrlCrossRefPubMedWeb of Science
    1. Tamamaki N.,
    2. Fujimori K. E.,
    3. Takauji R.
    (1997) Origin and route of tangentially migrating neurons in the developing neocortical intermediate zone. J. Neurosci 17, 8313–8323
    OpenUrlAbstract/FREE Full Text
    1. Torii M.,
    2. Matsuzaki F.,
    3. Osumi N.,
    4. Kaibuchi K.,
    5. Nakamura S.,
    6. Casarosa S.,
    7. Guillemot F.,
    8. Nakafuku M.
    (1999) Transcription factors Mash-1 and Prox-1 are involved in cell fate transition of neural stem cells in the developing central nervous system. Development 126, 443–456
    OpenUrlAbstract
    1. van der Kooy
    (1984) Developmental relationships between opiate receptors and dopamine in the formation of caudate/putamen patches. Dev. Brain Res 14, 300–303
    OpenUrlCrossRef
    1. Xu Y.,
    2. Baldassarre M.,
    3. Fisher P.,
    4. Rathbun G.,
    5. Oltz E.M.,
    6. Yancopoulos G. D.,
    7. Jessel T. M.,
    8. Alt F. W.
    (1993) LH-2: A LIM/homeodomain gene expressed in the developing lymphocytes and neural cells. Proc. Natl. Acad. Sci. USA 90, 227–231
    OpenUrlAbstract/FREE Full Text
Previous ArticleNext Article
Back to top
Previous ArticleNext Article

This Issue

 Download PDF

Email

Thank you for your interest in spreading the word on Development.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Mash1 regulates neurogenesis in the ventral telencephalon
(Your Name) has sent you a message from Development
(Your Name) thought you would like to see the Development web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
JOURNAL ARTICLES
Mash1 regulates neurogenesis in the ventral telencephalon
S. Casarosa, C. Fode, F. Guillemot
Development 1999 126: 525-534;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Citation Tools
JOURNAL ARTICLES
Mash1 regulates neurogenesis in the ventral telencephalon
S. Casarosa, C. Fode, F. Guillemot
Development 1999 126: 525-534;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Alerts

Please log in to add an alert for this article.

Sign in to email alerts with your email address

Article navigation

  • Top
  • Article
  • Info & metrics
  • PDF

Related articles

Cited by...

More in this TOC section

  • Non-imprinted Igf2r expression decreases growth and rescues the Tme mutation in mice
  • REF-1, a protein with two bHLH domains, alters the pattern of cell fusion in C. elegans by regulating Hox protein activity
  • Centrosome migration into the Drosophila oocyte is independent of BicD and egl, and of the organisation of the microtubule cytoskeleton
Show more JOURNAL ARTICLES

Similar articles

Other journals from The Company of Biologists

Journal of Cell Science

Journal of Experimental Biology

Disease Models & Mechanisms

Biology Open

Advertisement

A new society for regenerative biologists

Kenneth Poss and Elly Tanaka announce the launch of the International Society for Regenerative Biology (ISRB), which will promote research and education in the field of regenerative biology.


Upcoming special issue: call for papers

The Immune System in Development and Regeneration
Guest editors: Florent Ginhoux and Paul Martin
Submission deadline: 1 September 2021
Publication: Spring 2022

The special issue welcomes Review articles as well as Research articles, and will be widely promoted online and at key global conferences.


An interview with Cagney Coomer

Over a virtual chat, we spoke to Cagney Coomer about her experiences in the lab, the classroom and the community centre, and why she thinks outreach and role models are vital to science.


Development presents...

Our successful webinar series continues into 2021, with early-career researchers presenting their papers and a chance to virtually network with the developmental biology community afterwards. Here, Michèle Romanos talks about her new preprint, which mixes experimentation in quail embryos and computational modelling to understand how heterogeneity in a tissue influences cell rate.

Save your spot at our next session:

10 March
Time: 9:00 (GMT)
Chaired by: Thomas Lecuit

Join our mailing list to receive news and updates on the series.

Articles

  • Accepted manuscripts
  • Latest complete issue
  • Issue archive
  • Archive by article type
  • Special issues
  • Subject collections
  • Sign up for alerts

About us

  • About Development
  • About the Node
  • Editors and board
  • Editor biographies
  • Travelling Fellowships
  • Grants and funding
  • Journal Meetings
  • Workshops
  • The Company of Biologists

For authors

  • Submit a manuscript
  • Aims and scope
  • Presubmission enquiries
  • Article types
  • Manuscript preparation
  • Cover suggestions
  • Editorial process
  • Promoting your paper
  • Open Access
  • Biology Open transfer

Journal info

  • Journal policies
  • Rights and permissions
  • Media policies
  • Reviewer guide
  • Sign up for alerts

Contact

  • Contact Development
  • Subscriptions
  • Advertising
  • Feedback
  • Institutional usage stats (logged-in users only)

 Twitter   YouTube   LinkedIn

© 2021   The Company of Biologists Ltd   Registered Charity 277992