Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Sign up for alerts
  • About us
    • About Development
    • About the Node
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contacts
    • Subscriptions
    • Feedback
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

User menu

  • Log in
  • Log out

Search

  • Advanced search
Development
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

supporting biologistsinspiring biology

Development

  • Log in
Advanced search

RSS  Twitter  Facebook  YouTube 

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Sign up for alerts
  • About us
    • About Development
    • About the Node
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contacts
    • Subscriptions
    • Feedback
JOURNAL ARTICLES
Genetic control of programmed cell death in the Caenorhabditis elegans hermaphrodite germline
T.L. Gumienny, E. Lambie, E. Hartwieg, H.R. Horvitz, M.O. Hengartner
Development 1999 126: 1011-1022;
T.L. Gumienny
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
E. Lambie
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
E. Hartwieg
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
H.R. Horvitz
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M.O. Hengartner
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & metrics
  • PDF
Loading

Summary

Development of the nematode Caenorhabditis elegans is highly reproducible and the fate of every somatic cell has been reported. We describe here a previously uncharacterized cell fate in C. elegans: we show that germ cells, which in hermaphrodites can differentiate into sperm and oocytes, also undergo apoptotic cell death. In adult hermaphrodites, over 300 germ cells die, using the same apoptotic execution machinery (ced-3, ced-4 and ced-9) as the previously described 131 somatic cell deaths. However, this machinery is activated by a distinct pathway, as loss of egl-1 function, which inhibits somatic cell death, does not affect germ cell apoptosis. Germ cell death requires ras/MAPK pathway activation and is used to maintain germline homeostasis. We suggest that apoptosis eliminates excess germ cells that acted as nurse cells to provide cytoplasmic components to maturing oocytes.

Reference

    1. Abrams J. M.,
    2. White K.,
    3. Fessler L. I.,
    4. Steller H.
    (1993) Programmed cell death during Drosophila embryogenesis. Development 117, 29–43
    OpenUrlAbstract/FREE Full Text
    1. Adams J. M.,
    2. Cory S.
    (1998) The Bcl-2 protein family: arbiters of cell survival. Science 281, 1322–1326
    OpenUrlAbstract/FREE Full Text
    1. Brenner S.
    (1974) The genetics of Caenorhabditis elegans. Genetics 77, 71–94
    OpenUrlAbstract/FREE Full Text
    1. Chang B. S.,
    2. Minn A. J.,
    3. Muchmore S. W.,
    4. Fesik S. W.,
    5. Thompson C. B.
    (1997) Identification of a novel regulatory domain in Bcl-X(L) and Bcl-2. EMBO J 16, 968–977
    OpenUrlAbstract
    1. Chao D. T.,
    2. Korsmeyer S. J.
    (1998) BCL-2 family: regulators of cell death. Annu. Rev. Immunol 16, 395–419
    OpenUrlCrossRefPubMedWeb of Science
    1. Church D. L.,
    2. Guan K. L.,
    3. Lambie E. J.
    (1995) Three genes of the MAP kinase cascade, mek-2, mpk-1/sur-1 and let-60 ras, are required for meiotic cell cycle progression in Caenorhabditis elegans. Development 121, 2525–2535
    OpenUrlAbstract
    1. Conradt B.,
    2. Horvitz H. R.
    (1998) The C. elegans protein EGL-1 is required for programmed cell death and interacts with the Bcl-2-like protein CED-9. Cell 93, 519–529
    OpenUrlCrossRefPubMedWeb of Science
    1. Datta R.,
    2. Manome Y.,
    3. Taneja N.,
    4. Boise L. H.,
    5. Weichselbaum R.,
    6. Thompson C. B.,
    7. Slapak C. A.,
    8. Kufe D.
    (1995) Overexpression of Bcl-XL by cytotoxic drug exposure confers resistance to ionizing radiation-induced internucleosomal DNA fragmentation. Cell Growth Differ 6, 363–370
    OpenUrlAbstract
    1. del Peso L.,
    2. Gonzalez-Garcia M.,
    3. Page C.,
    4. Herrera R.,
    5. Nunez G.
    (1997) Interleukin-3-induced phosphorylation of BAD through the protein kinase Akt. Science 278, 687–689
    OpenUrlAbstract/FREE Full Text
    1. Driscoll M.
    (1992) Molecular genetics of cell death in the nematode Caenorhabditis elegans. J. Neurobiol 23, 1327–1351
    OpenUrlCrossRefPubMedWeb of Science
    1. Ellis H. M.,
    2. Horvitz H. R.
    (1986) Genetic control of programmed cell death in the nematode C. elegans. Cell 44, 817–829
    OpenUrlCrossRefPubMedWeb of Science
    1. Ellis R. E.,
    2. Horvitz H. R.
    (1991) Two C. elegans genes control the programmed deaths of specific cells in the pharynx. Development 112, 591–603
    OpenUrlAbstract
    1. Ellis R. E.,
    2. Jacobson D. M.,
    3. Horvitz H. R.
    (1991) Genes required for the engulfment of cell corpses during programmed cell death in Caenorhabditis elegans. Genetics 129, 79–94
    OpenUrlAbstract/FREE Full Text
    1. Ellis R. E.,
    2. Yuan J. Y.,
    3. Horvitz H. R.
    (1991) Mechanisms and functions of cell death. Annu. Rev. Cell Biol 7, 663–698
    OpenUrlCrossRefWeb of Science
    1. Francis R.,
    2. Barton M. K.,
    3. Kimble J.,
    4. Schedl T.
    (1995) gld-1, a tumor suppressor gene required for oocyte development in Caenorhabditis elegans. Genetics 139, 579–606
    OpenUrlAbstract/FREE Full Text
    1. Gibert M. A.,
    2. Starck J.,
    3. Beguet B.
    (1984) Role of the gonad cytoplasmic core during oogenesis of the nematode Caenorhabditis elegans. Biol. Cell 50, 77–85
    OpenUrlCrossRefPubMed
    1. Hedgecock E. M.,
    2. Sulston J. E.,
    3. Thomson J. N.
    (1983) Mutations affecting programmed cell deaths in the nematode Caenorhabditis elegans. Science 220, 1277–1279
    OpenUrlAbstract/FREE Full Text
    1. Hengartner M. O.,
    2. Ellis R. E.,
    3. Horvitz H. R.
    (1992) Caenorhabditis elegans gene ced-9 protects cells from programmed cell death. Nature 356, 494–499
    OpenUrlCrossRefPubMed
    1. Hengartner M. O.,
    2. Horvitz H. R.
    (1994) C. elegans cell survival gene ced-9 encodes a functional homolog of the mammalian proto-oncogene bcl-2. Cell 76, 665–676
    OpenUrlCrossRefPubMedWeb of Science
    1. Hengartner M. O.,
    2. Horvitz H. R.
    (1994) The ins and outs of programmed cell death during C. elegans development. Philos. Trans. R. Soc. Lond. B. Biol. Sci 345, 243–246
    OpenUrlCrossRefPubMedWeb of Science
    1. Hengartner M. O.
    (1997) Apoptosis. CED-4 is a stranger no more. Nature 388, 714–715
    OpenUrlCrossRefPubMed
    1. Hengartner M. O.
    (1998) Apoptosis. Death cycle and Swiss army knives. Nature 391, 441–442
    OpenUrlCrossRefPubMedWeb of Science
    1. Hodgkin J. A.,
    2. Brenner S.
    (1977) Mutations causing transformation of sexual phenotype in the nematode Caenorhabditis elegans. Genetics 86, 275–287
    OpenUrlAbstract/FREE Full Text
    1. Hodgkin J.
    (1980) More sex-determination mutants of Caenorhabditis elegans. Genetics 96, 649–664
    OpenUrlAbstract/FREE Full Text
    1. Horvitz H. R.,
    2. Shaham S.,
    3. Hengartner M. O.
    (1994) The genetics of programmed cell death in the nematode Caenorhabditis elegans. Cold Spring Harb. Symp. Quant. Biol 59, 377–385
    OpenUrlAbstract/FREE Full Text
    1. Kayne P.,
    2. Sternberg P.
    (1995) Ras pathways in Caenorhabditis elegans. Curr. Opin. Genet. Dev 5, 38–43
    OpenUrlCrossRefPubMed
    1. Kerr J. F.,
    2. Wyllie A. H.,
    3. Currie A. R.
    (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br. J. Cancer 26, 239–257
    OpenUrlCrossRefPubMedWeb of Science
    1. Kimble J.,
    2. Hirsh D.
    (1979) The postembryonic cell lineages of the hermaphrodite and male gonads in Caenorhabditis elegans. Dev. Biol 70, 396–417
    OpenUrlCrossRefPubMedWeb of Science
    1. MacLennan I.
    (1994) Germinal centers. Annu. Rev. Immunol 12, 117–139
    OpenUrlCrossRefPubMedWeb of Science
    1. Reed J. C.
    (1994) Bcl-2 and the regulation of programmed cell death. J. Cell Biol 124, 1–6
    OpenUrlFREE Full Text
    1. Robey E.,
    2. Fowlkes B.
    (1994) Selective events in T cell development. Annu. Rev. Immunol 12, 675–705
    OpenUrlCrossRefPubMedWeb of Science
    1. Starck J.
    (1977) Radioautographic Study of RNA Synthesis in Caenorhabditis elegans (Bergerac Variety) Oogenesis. Biol. Cellulaire 30, 181–182
    OpenUrl
    1. Sternberg P. W.,
    2. Horvitz H. R.
    (1981) Gonadal cell lineages of the nematode Panagrellus redivivus and implications for evolution by the modification of cell lineage. Dev. Biol 88, 147–166
    OpenUrlCrossRefPubMedWeb of Science
    1. Sulston J. E.,
    2. Brenner S.
    (1974) The DNA of Caenorhabditis elegans. Genetics 77, 95–104
    OpenUrlAbstract/FREE Full Text
    1. Sulston J. E.,
    2. Horvitz H. R.
    (1977) Post-embryonic cell lineages of the nematode, Caenorhabditis elegans. Dev. Biol 56, 110–156
    OpenUrlCrossRefPubMedWeb of Science
    1. Sulston J. E.,
    2. Albertson D. G.,
    3. Thomson J. N.
    (1980) The Caenorhabditis elegans male: postembryonic development of nongonadal structures. Dev. Biol 78, 542–576
    OpenUrlCrossRefPubMedWeb of Science
    1. Sulston J. E.,
    2. Schierenberg E.,
    3. White J. G.,
    4. Thomson J. N.
    (1983) The embryonic cell lineage of the nematode Caenorhabditis elegans. Dev. Biol 100, 64–119
    OpenUrlCrossRefPubMedWeb of Science
    1. Wang H. G.,
    2. Rapp U. R.,
    3. Reed J. C.
    (1996) Bcl-2 targets the protein kinase Raf-1 to mitochondria. Cell 87, 629–638
    OpenUrlCrossRefPubMedWeb of Science
    1. White K.,
    2. Grether M. E.,
    3. Abrams J. M.,
    4. Young L.,
    5. Farrell K.,
    6. Steller H.
    (1994) Genetic control of programmed cell death in Drosophila. Science 264, 677–683
    OpenUrlAbstract/FREE Full Text
    1. Wyllie A. H.,
    2. Kerr J. F. R.,
    3. Currie A. R.
    (1980) Cell death: the significance of apoptosis. Int. Rev. Cytol 68, 251–306
    OpenUrlCrossRefPubMed
    1. Xue D.,
    2. Shaham S.,
    3. Horvitz H. R.
    (1996) The Caenorhabditis elegans cell-death protein CED-3 is a cysteine protease with substrate specificities similar to those of the human CPP32 protease. Genes Dev 10, 1073–1083
    OpenUrlAbstract/FREE Full Text
    1. Yang E.,
    2. Zha J.,
    3. Jockel J.,
    4. Boise L. H.,
    5. Thompson C. B.,
    6. Korsmeyer S. J.
    (1995) Bad, a heterodimeric partner for Bcl-XL and Bcl-2, displaces Bax and promotes cell death. Cell 80, 285–291
    OpenUrlCrossRefPubMedWeb of Science
    1. Yin X. M.,
    2. Oltvai Z. N.,
    3. Veis-Novack D. J.,
    4. Linette G. P.,
    5. Korsmeyer S. J.
    (1994) Bcl-2 gene family and the regulation of programmed cell death. Cold Spring Harb. Symp. Quant. Biol 59, 387–393
    OpenUrlAbstract/FREE Full Text
    1. Yuan J.,
    2. Horvitz H. R.
    (1992) The Caenorhabditis elegans cell death gene ced-4 encodes a novel protein and is expressed during the period of extensive programmed cell death. Development 116, 309–320
    OpenUrlAbstract/FREE Full Text
    1. Yuan J.,
    2. Shaham S.,
    3. Ledoux S.,
    4. Ellis H. M.,
    5. Horvitz H. R.
    (1993) The C. elegans cell death gene ced-3 encodes a protein similar to mammalian interleukin-1 beta-converting enzyme. Cell 75, 641–652
    OpenUrlCrossRefPubMedWeb of Science
    1. Zou H.,
    2. Henzel W. J.,
    3. Liu X.,
    4. Lutschg A.,
    5. Wang X.
    (1997) Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3. Cell 90, 405–413
    OpenUrlCrossRefPubMedWeb of Science
Previous ArticleNext Article
Back to top
Previous ArticleNext Article

This Issue

 Download PDF

Email

Thank you for your interest in spreading the word on Development.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Genetic control of programmed cell death in the Caenorhabditis elegans hermaphrodite germline
(Your Name) has sent you a message from Development
(Your Name) thought you would like to see the Development web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
JOURNAL ARTICLES
Genetic control of programmed cell death in the Caenorhabditis elegans hermaphrodite germline
T.L. Gumienny, E. Lambie, E. Hartwieg, H.R. Horvitz, M.O. Hengartner
Development 1999 126: 1011-1022;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Citation Tools
JOURNAL ARTICLES
Genetic control of programmed cell death in the Caenorhabditis elegans hermaphrodite germline
T.L. Gumienny, E. Lambie, E. Hartwieg, H.R. Horvitz, M.O. Hengartner
Development 1999 126: 1011-1022;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Alerts

Please log in to add an alert for this article.

Sign in to email alerts with your email address

Article navigation

  • Top
  • Article
  • Info & metrics
  • PDF

Related articles

Cited by...

More in this TOC section

  • Morphogenetic cell movements in the middle region of the dermomyotome dorsomedial lip associated with patterning and growth of the primary epaxial myotome
  • Germline and developmental roles of the nuclear transport factor importin (α)3 in C. elegans
  • Monofocal origin of telencephalic oligodendrocytes in the anterior entopeduncular area of the chick embryo
Show more JOURNAL ARTICLES

Similar articles

Other journals from The Company of Biologists

Journal of Cell Science

Journal of Experimental Biology

Disease Models & Mechanisms

Biology Open

Advertisement

Kathryn Virginia Anderson (1952-2020)

Developmental geneticist Kathryn Anderson passed away at home on 30 November 2020. Tamara Caspary, a former postdoc and friend, remembers Kathryn and her remarkable contribution to developmental biology.


Zooming into 2021

In a new Editorial, Editor-in-Chief James Briscoe and Executive Editor Katherine Brown reflect on the triumphs and tribulations of the last 12 months, and look towards a hopefully calmer and more predictable year.


Read & Publish participation extends worldwide

Over 60 institutions in 12 countries are now participating in our Read & Publish initiative. Here, James Briscoe explains what this means for his institution, The Francis Crick Institute. Find out more and view our full list of participating institutions.


Upcoming special issues

Imaging Development, Stem Cells and Regeneration
Submission deadline: 30 March 2021
Publication: mid-2021

The Immune System in Development and Regeneration
Guest editors: Florent Ginhoux and Paul Martin
Submission deadline: 1 September 2021
Publication: Spring 2022

Both special issues welcome Review articles as well as Research articles, and will be widely promoted online and at key global conferences.


Development presents...

Our successful webinar series continues into 2021, with early-career researchers presenting their papers and a chance to virtually network with the developmental biology community afterwards. Sign up to join our next session:

10 February
Time: 13:00 (GMT)
Chaired by: preLights

Articles

  • Accepted manuscripts
  • Issue in progress
  • Latest complete issue
  • Issue archive
  • Archive by article type
  • Special issues
  • Subject collections
  • Sign up for alerts

About us

  • About Development
  • About the Node
  • Editors and board
  • Editor biographies
  • Travelling Fellowships
  • Grants and funding
  • Journal Meetings
  • Workshops
  • The Company of Biologists

For authors

  • Submit a manuscript
  • Aims and scope
  • Presubmission enquiries
  • Article types
  • Manuscript preparation
  • Cover suggestions
  • Editorial process
  • Promoting your paper
  • Open Access
  • Biology Open transfer

Journal info

  • Journal policies
  • Rights and permissions
  • Media policies
  • Reviewer guide
  • Sign up for alerts

Contact

  • Contact Development
  • Subscriptions
  • Advertising
  • Feedback

 Twitter   YouTube   LinkedIn

© 2021   The Company of Biologists Ltd   Registered Charity 277992