Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Sign up for alerts
  • About us
    • About Development
    • About the Node
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contacts
    • Subscriptions
    • Feedback
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

User menu

  • Log in
  • Log out

Search

  • Advanced search
Development
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

supporting biologistsinspiring biology

Development

  • Log in
Advanced search

RSS  Twitter  Facebook  YouTube 

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Sign up for alerts
  • About us
    • About Development
    • About the Node
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contacts
    • Subscriptions
    • Feedback
JOURNAL ARTICLES
Retinoic acid synthesis and hindbrain patterning in the mouse embryo
K. Niederreither, J. Vermot, B. Schuhbaur, P. Chambon, P. Dolle
Development 2000 127: 75-85;
K. Niederreither
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J. Vermot
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
B. Schuhbaur
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
P. Chambon
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
P. Dolle
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & metrics
  • PDF
Loading

Summary

Targeted disruption of the murine retinaldehyde dehydrogenase 2 (Raldh2) gene precludes embryonic retinoic acid (RA) synthesis, leading to midgestational lethality (Niederreither, K., Subbarayan, V., Dolle, P. and Chambon, P. (1999). Nature Genet. 21, 444–448). We describe here the effects of this RA deficiency on the development of the hindbrain and associated neural crest. Morphological segmentation is impaired throughout the hindbrain of Raldh2−/− embryos, but its caudal portion becomes preferentially reduced in size during development. Specification of the midbrain region and of the rostralmost rhombomeres is apparently normal in the absence of RA synthesis. In contrast, marked alterations are seen throughout the caudal hindbrain of mutant embryos. Instead of being expressed in two alternate rhombomeres (r3 and r5), Krox20 is expressed in a single broad domain, correlating with an abnormal expansion of the r2-r3 marker Meis2. Instead of forming a defined r4, Hoxb1- and Wnt8A-expressing cells are scattered throughout the caudal hindbrain, whereas r5/r8 markers such as kreisler or group 3/4 Hox genes are undetectable or markedly downregulated. Lack of alternate Eph receptor gene expression could explain the failure to establish rhombomere boundaries. Increased apoptosis and altered migratory pathways of the posterior rhombencephalic neural crest cells are associated with impaired branchial arch morphogenesis in mutant embryos. We conclude that RA produced by the embryo is required to generate posterior cell fates in the developing mouse hindbrain, its absence leading to an abnormal r3 (and, to a lesser extent, r4) identity of the caudal hindbrain cells.

REFERENCES

    1. Beddington R. S.,
    2. Robertson E. J.
    (1999) Axis development and early asymmetry in mammals. Cell 96, 195–209
    OpenUrlCrossRefPubMedWeb of Science
    1. Berggren K.,
    2. McCaffery P.,
    3. Dräger U.,
    4. Forehand C. J.
    (1999) Differential distribution of retinoic acid synthesis in the chicken embryo as determined by immunolocalization of the retinoic acid synthetic enzyme, RALDH-2. Dev. Biol 210, 288–304
    OpenUrlCrossRefPubMedWeb of Science
    1. Blumberg B.,
    2. Bolado J., Jr.,
    3. Moreno T. A.,
    4. Kintner C.,
    5. Evans R. M.,
    6. Papalopulu N.
    (1997) An essential role for retinoid signaling in anteroposterior neural patterning. Development 124, 373–379
    OpenUrlAbstract
    1. Chazaud C.,
    2. Oulad-Abdelghani M.,
    3. Bouillet P.,
    4. Decimo D.,
    5. Chambon P.,
    6. Dolle P.
    (1996). AP-2.2, a novel gene related to AP-2, is expressed in the forebrain, limbs and face during mouse embryogenesis. Mech. Dev 54, 83–94
    OpenUrlCrossRefPubMedWeb of Science
    1. Choo D.,
    2. Sanne J. C.,
    3. Wu D. K.
    (1998) The differential sensitivities of inner ear structures to retinoic acid during development. Dev. Biol 204, 136–150
    OpenUrlCrossRefPubMedWeb of Science
    1. Conlon R. A.
    (1995) Retinoic acid and pattern formation in vertebrates. Trends Genet 11, 314–319
    OpenUrlCrossRefPubMedWeb of Science
    1. Conlon R. A.,
    2. Reaume A. G.,
    3. Rossant J.
    (1995) Notch1 is required for the coordinate segmentation of somites. Development 121, 1533–1545
    OpenUrlAbstract
    1. Dupe V.,
    2. Davenne M.,
    3. Brocard J.,
    4. Dolle P.,
    5. Mark M.,
    6. Dierich A.,
    7. Chambon P.,
    8. Rijli F. M.
    (1997) In vivo functional analysis of the Hoxa-1 3retinoic acid response element (3 RARE). Development 124, 339–410
    OpenUrl
    1. Dupe V.,
    2. Ghyselinck N. B.,
    3. Wendling O.,
    4. Chambon P.,
    5. Mark M.
    (1999) Key roles of retinoic acid receptors alpha and beta in the patterning of the caudal hindbrain, pharyngeal arches and otocyst in the mouse. Development 126, 5051–5059
    OpenUrlAbstract
    1. Durston A. J.,
    2. Timmermans J. P. M.,
    3. Hage W. J.,
    4. Hendriks H. F. J.,
    5. de Vries N. J.,
    6. Heideveld M.,
    7. Nieuwkoop P. D.
    (1989) Retinoic acid causes an anteroposterior transformation in the developing central nervous system. Nature 340, 140–144
    OpenUrlCrossRefPubMed
    1. Fujii H.,
    2. Sato T.,
    3. Kaneko S.,
    4. Gotoh O.,
    5. Fuji-Kuriyama Y.,
    6. Osawa K.,
    7. Kato S.,
    8. Hamada H.
    (1997) Metabolic inactivation of retinoic acid by a novel P450 differentially expressed in developing mouse embryos. EMBO J 16, 4163–4173
    OpenUrlAbstract
    1. Gould A.,
    2. Itasaki N.,
    3. Krumlauf R.
    (1998) Initiation of rhombomeric Hoxb-4 expression requires induction by somites and a retinoic pathway. Neuron 21, 39–51
    OpenUrlCrossRefPubMedWeb of Science
    1. Graham A.,
    2. Koentges G.,
    3. Lumsden A.
    (1996) Neural crest apoptosis and the establishment of craniofacial pattern: an honorable death. Mol. Cell. Neurosci 8, 76–83
    OpenUrlCrossRefPubMedWeb of Science
    1. Grapin-Botton A.,
    2. Bonnin M. A.,
    3. Sieweke M.,
    4. Le Douarin N. M.
    (1998) Defined concentrations of a posteriorizing signal are critical for MafB/kreisler segmental expression in the hindbrain. Development 125, 1173–1181
    OpenUrlAbstract
    1. Hollemann T.,
    2. Chen Y.,
    3. Grunz H.,
    4. Pieler T.
    (1998) Regionalized metabolic activity establishes boundaries of retinoic acid signaling. EMBO J 17, 7361–7372
    OpenUrlAbstract/FREE Full Text
    1. Huang D.,
    2. Chen S. W.,
    3. Langston A. W.,
    4. Gudas L. J.
    (1998) A conserved retinoic acid responsive element in the murine Hoxb-1 gene is required for expression in the developing gut. Development 125, 3235–3246
    OpenUrlAbstract
    1. Joyner A. L.
    (1996) Engrailed, Wnt and Pax genes regulate midbrain-hindbrain development. Trends Genet 12, 15–20
    OpenUrlCrossRefPubMedWeb of Science
    1. Kolm P. J.,
    2. Apekin V.,
    3. Sive H.
    (1997) Xenopus hindbrain patterning requires retinoid signaling. Dev. Biol 192, 1–16
    OpenUrlCrossRefPubMed
    1. Kolm P. J.,
    2. Sive H. L.
    (1997) Retinoids and posterior neural induction: a reevaluation of Nieuwkoop's two-step hypothesis. Cold Spring Harb. Symp. Quant. Biol 62, 511–21
    OpenUrlAbstract/FREE Full Text
    1. Lumsden A.,
    2. Krumlauf R.
    (1996) Patterning the vertebrate neuraxis. Science 274, 1109–1115
    OpenUrlAbstract/FREE Full Text
    1. Maden M.,
    2. Horton C.,
    3. Graham A.,
    4. Leonard L.,
    5. Pizzey J.,
    6. Siegenthaler G.,
    7. Lumsden A.,
    8. Eriksson U.
    (1992) Domains of cellular retinoic acid-binding protein I (CRABP I) expression in the hindbrain and neural crest of the mouse embryo. Mech. Dev 37, 13–23
    OpenUrlCrossRefPubMedWeb of Science
    1. Maden M.,
    2. Gale E.,
    3. Kostetskii I.,
    4. Zile M.
    (1996) Vitamin A-deficient quail embryos have half a hindbrain and other neural defects. Curr. Biol 6, 417–426
    OpenUrlCrossRefPubMedWeb of Science
    1. Maden M.,
    2. Graham A.,
    3. Gale E.,
    4. Rollinson C.,
    5. Zile M.
    (1997) Positional apoptosis during vertebrate CNS development in the absence of endogenous retinoids. Development 124, 2799–2805
    OpenUrlAbstract
    1. Maden M.,
    2. Sonneveld E.,
    3. van der Saag P. T.,
    4. Gale E.
    (1998) The distribution of endogenous retinoic acid in the chick embryo: implications for developmental mechanisms. Development 125, 4133–4144
    OpenUrlAbstract
    1. Manzanares M.,
    2. Cordes S.,
    3. Ariza-McNaughton L.,
    4. Sadl V.,
    5. Maruthainar K.,
    6. Barsh G.,
    7. Krumlauf R.
    (1999) Conserved and distinct roles of kreisler in regulation of the paralogous Hoxa-3 and Hoxb-3 genes. Development 126, 759–769
    OpenUrlAbstract
    1. Mark M.,
    2. Lufkin T.,
    3. Vonesch J. L.,
    4. Ruberte E.,
    5. Olivo J. C.,
    6. Dolle P.,
    7. Gorry P.,
    8. Lumsden A.,
    9. Chambon P.
    (1993) Two rhombomeres are altered in Hoxa-1 mutant mice. Development 119, 319–338
    OpenUrlAbstract
    1. Mark M.,
    2. Ghyselinck N.,
    3. Kastner P.,
    4. Dupe V.,
    5. Wendling O.,
    6. Krezel W.,
    7. Mascrez B.,
    8. Chambon P.
    (1998) Mesectoderm is a major target of retinoic acid action. Eur. J. Oral Sci 106, 24–31
    OpenUrlPubMed
    1. Marshall H.,
    2. Morrison A.,
    3. Studer M.,
    4. Popperl H.,
    5. Krumlauf R.
    (1996) Retinoids and Hox genes. FASEB J 10, 969–78
    OpenUrlAbstract
    1. McKay I. J.,
    2. Muchamore I.,
    3. Krumlauf R.,
    4. Maden M.,
    5. Lumsden A.,
    6. Lewis J. H.
    (1994) The kreisler mouse: a hindbrain segmentation mutant that lacks two rhombomeres. Development 120, 2199–2211
    OpenUrlAbstract
    1. Mitchell P. J.,
    2. Timmons P. M.,
    3. Hebert J. M.,
    4. Rigby P. W.,
    5. Tjian R.
    (1991) Transcription factor AP-2 is expressed in neural crest cell lineages during mouse embryogenesis. Genes. Dev 5, 105–119
    OpenUrlAbstract/FREE Full Text
    1. Niederreither K.,
    2. McCaffery P.,
    3. Dräger U. C.,
    4. Chambon P.,
    5. Dolle P.
    (1997) Restricted expression and retinoic acid-induced downregulation of the retinaldehyde dehydrogenase type 2 (RALDH-2) gene during mouse development. Mech. Dev 62, 67–78
    OpenUrlCrossRefPubMedWeb of Science
    1. Niederreither K.,
    2. Subbarayan V.,
    3. Dolle P.,
    4. Chambon P.
    (1999) Embryonic retinoic acid synthesis is essential for early mouse post-implantation development. Nature Genet 21, 444–448
    OpenUrlCrossRefPubMedWeb of Science
    1. Nieto M. A.,
    2. Bennett M. F.,
    3. Sargent M. G.,
    4. Wilkinson D. G.
    (1992) Cloning and developmental expression of Sna, a murine homologue of the Drosophilasnail gene. Development 116, 227–37
    OpenUrlAbstract
    1. Nieuwkoop P. D.
    (1985) Inductive interactions in early amphibian development and their general nature. J. Embryol. Exp. Morphol 89, 333–347
    OpenUrlPubMedWeb of Science
    1. Nonchev S.,
    2. Vesque C.,
    3. Maconochie M.,
    4. Seitanidou T.,
    5. Ariza-McNaughton L.,
    6. Frain M.,
    7. Marshall H.,
    8. Sham M. H.,
    9. Krumaluf R.,
    10. Charnay P.
    (1996) Segmental expression of Hoxa-2 in the hindbrain is directly regulated by Krox-20. Development 122, 543–554
    OpenUrlAbstract
    1. Packer A. I.,
    2. Crotty D. A.,
    3. Elwell V. A.,
    4. Wolgemuth D. J.
    (1998) Expression of the murine Hoxa4 gene requires both autoregulation and a conserved retinoic acid response element. Development 125, 1991–1998
    OpenUrlAbstract
    1. Rijli F. M.,
    2. Gavalas A.,
    3. Chambon P.
    (1998) Segmentation and specification in the branchial region of the head: the role of the Hox selector genes. Int. J. Dev. Biol 42, 393–401
    OpenUrlPubMedWeb of Science
    1. Rinkwitz-Brandt S.,
    2. Justus M.,
    3. Oldenettel I.,
    4. Arnold H. H.,
    5. Bober E.
    (1995). Distinct temporal expression of mouse Nkx-5.1 and Nkx-5.2 homeobox genes during brain and ear development. Mech. Dev 52, 371–381
    OpenUrlCrossRefPubMedWeb of Science
    1. Schneider-Maunoury S.,
    2. Seitanidou T.,
    3. Charnay P.,
    4. Lumsden A.
    (1997) Segmental and neuronal architecture of the hindbrain of Krox-20 mouse mutants. Development 124, 1215–1226
    OpenUrlAbstract
    1. Sham M. H.,
    2. Vesque C.,
    3. Nonchev S.,
    4. Marshall H.,
    5. Frain M.,
    6. Gupta R.,
    7. Whiting J.,
    8. Wilkinson D.,
    9. Charnay P.,
    10. Krumlauf R.
    (1993) The zinc finger gene Krox20 regulates HoxB2 during hindbrain segmentation. Cell 72, 183–96
    OpenUrlCrossRefPubMedWeb of Science
    1. Studer M.,
    2. Pöpperl H.,
    3. Marshall H.,
    4. Kuroiwa A.,
    5. Krumlauf R.
    (1994) Role of a conserved retinoic acid response element in rhombomere restriction of Hoxb-1. Science 265, 1728–1732
    OpenUrlAbstract/FREE Full Text
    1. Studer M.,
    2. Gavalas A.,
    3. Marshall H.,
    4. Ariza-McNaughton L.,
    5. Rijli F. M.,
    6. Chambon P.,
    7. Krumlauf R.
    (1998) Genetic interactions between Hoxa1 and Hoxb1 reveal new roles in regulation of early hindbrain patterning. Development 125, 1025–36
    OpenUrlAbstract
    1. Theil T.,
    2. Frain M.,
    3. Gilardi-Hebenstreit P.,
    4. Flenniken A.,
    5. Charnay P.,
    6. Wilkinson D. G.
    (1998) Segmental expression of the EphA4 (Sek-1) receptor tyrosine kinase in the hindbrain is under direct transcriptional control of Krox-20. Development 125, 443–452
    OpenUrlAbstract
    1. Trainor P. A.,
    2. Tam P. P. L.
    (1995) Cranial paraxial mesoderm and neural crest cells of the mouse embryo: co-distribution in craniofacial mesenchyme but distinct segregation in branchial arches. Development 121, 2569–2582
    OpenUrlAbstract
    1. Van der Wees J.,
    2. Schilthuis J. G.,
    3. Koster C. H.,
    4. Diesveld-Schipper H.,
    5. Folkers G. E.,
    6. van der Saag P. T.,
    7. Dawson M. I.,
    8. Shudo K.,
    9. van der Burg B.,
    10. Durston A. J.
    (1998) Inhibition of retinoic acid receptor-mediated signalling alters positional identity in the developing hindbrain. Development 125, 545–556
    OpenUrlAbstract
    1. Wang X.,
    2. Penzes P.,
    3. Napoli J. L.
    (1996) Cloning of a cDNA encoding an aldehyde dehydrogenase and its expression in Escherichia coli. Recognition of retinal as substrate. J. Biol. Chem 271, 16288–93
    OpenUrlAbstract/FREE Full Text
    1. White J. C.,
    2. Shankar V. N.,
    3. Highland M.,
    4. Epstein M. L.,
    5. DeLuca H. F.,
    6. Clagett-Dame M.
    (1998) Defects in embryonic hindbrain development and fetal resorption resulting from vitamin A deficiency in the rat are prevented by feeding pharmological levels of all-trans retinoic acid. Proc. Natl. Acad. Sci. USA 95, 13459–13464
    OpenUrlAbstract/FREE Full Text
    1. Wilkinson D. G.,
    2. Bhatt S.,
    3. Cook M.,
    4. Boncinelli E.,
    5. Krumlauf R.
    (1989) Segmental expression of Hox 2 homeobox-containing genes in the developing mouse hindbrain. Nature 341, 405–409
    OpenUrlCrossRefPubMed
    1. Wilson J. G.,
    2. Roth C. B.,
    3. Warkany J.
    (1958) An analysis of the syndrome of malformations induced by maternal vitamin A deficiency effects of restoration of vitamin A at various times during gestation. Amer. J. Anat 92, 189–216
    OpenUrl
    1. Xu Q.,
    2. Mellitzer G.,
    3. Robinson V.,
    4. Wilkinson D. G.
    (1999) In vivo cell sorting in complementary segmental domains mediated by Eph receptors and ephrins. Nature 399, 267–271
    OpenUrlCrossRefPubMedWeb of Science
    1. Zhao D.,
    2. McCaffery P.,
    3. Ivins K. J.,
    4. Neve R. L.,
    5. Hogan P.,
    6. Chin W. W.,
    7. Dräger U. C.
    (1996) Molecular identification of a major retinoic acid-synthesizing enzyme, a retinaldehyde dehydrogenase. Eur. J. Biochem 15, 15–22
    OpenUrlPubMed
Previous ArticleNext Article
Back to top
Previous ArticleNext Article

This Issue

 Download PDF

Email

Thank you for your interest in spreading the word on Development.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Retinoic acid synthesis and hindbrain patterning in the mouse embryo
(Your Name) has sent you a message from Development
(Your Name) thought you would like to see the Development web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
JOURNAL ARTICLES
Retinoic acid synthesis and hindbrain patterning in the mouse embryo
K. Niederreither, J. Vermot, B. Schuhbaur, P. Chambon, P. Dolle
Development 2000 127: 75-85;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Citation Tools
JOURNAL ARTICLES
Retinoic acid synthesis and hindbrain patterning in the mouse embryo
K. Niederreither, J. Vermot, B. Schuhbaur, P. Chambon, P. Dolle
Development 2000 127: 75-85;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Alerts

Please log in to add an alert for this article.

Sign in to email alerts with your email address

Article navigation

  • Top
  • Article
  • Info & metrics
  • PDF

Related articles

Cited by...

More in this TOC section

  • Morphogenetic cell movements in the middle region of the dermomyotome dorsomedial lip associated with patterning and growth of the primary epaxial myotome
  • Germline and developmental roles of the nuclear transport factor importin (α)3 in C. elegans
  • Monofocal origin of telencephalic oligodendrocytes in the anterior entopeduncular area of the chick embryo
Show more JOURNAL ARTICLES

Similar articles

Other journals from The Company of Biologists

Journal of Cell Science

Journal of Experimental Biology

Disease Models & Mechanisms

Biology Open

Advertisement

Kathryn Virginia Anderson (1952-2020)

Developmental geneticist Kathryn Anderson passed away at home on 30 November 2020. Tamara Caspary, a former postdoc and friend, remembers Kathryn and her remarkable contribution to developmental biology.


Zooming into 2021

In a new Editorial, Editor-in-Chief James Briscoe and Executive Editor Katherine Brown reflect on the triumphs and tribulations of the last 12 months, and look towards a hopefully calmer and more predictable year.


Read & Publish participation extends worldwide

Over 60 institutions in 12 countries are now participating in our Read & Publish initiative. Here, James Briscoe explains what this means for his institution, The Francis Crick Institute. Find out more and view our full list of participating institutions.


Upcoming special issues

Imaging Development, Stem Cells and Regeneration
Submission deadline: 30 March 2021
Publication: mid-2021

The Immune System in Development and Regeneration
Guest editors: Florent Ginhoux and Paul Martin
Submission deadline: 1 September 2021
Publication: Spring 2022

Both special issues welcome Review articles as well as Research articles, and will be widely promoted online and at key global conferences.


Development presents...

Our successful webinar series continues into 2021, with early-career researchers presenting their papers and a chance to virtually network with the developmental biology community afterwards. Sign up to join our next session:

10 February
Time: 13:00 (GMT)
Chaired by: preLights

Articles

  • Accepted manuscripts
  • Issue in progress
  • Latest complete issue
  • Issue archive
  • Archive by article type
  • Special issues
  • Subject collections
  • Sign up for alerts

About us

  • About Development
  • About the Node
  • Editors and board
  • Editor biographies
  • Travelling Fellowships
  • Grants and funding
  • Journal Meetings
  • Workshops
  • The Company of Biologists

For authors

  • Submit a manuscript
  • Aims and scope
  • Presubmission enquiries
  • Article types
  • Manuscript preparation
  • Cover suggestions
  • Editorial process
  • Promoting your paper
  • Open Access
  • Biology Open transfer

Journal info

  • Journal policies
  • Rights and permissions
  • Media policies
  • Reviewer guide
  • Sign up for alerts

Contact

  • Contact Development
  • Subscriptions
  • Advertising
  • Feedback

 Twitter   YouTube   LinkedIn

© 2021   The Company of Biologists Ltd   Registered Charity 277992