Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Sign up for alerts
  • About us
    • About Development
    • About the Node
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contacts
    • Subscriptions
    • Feedback
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

User menu

  • Log in
  • Log out

Search

  • Advanced search
Development
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

supporting biologistsinspiring biology

Development

  • Log in
Advanced search

RSS  Twitter  Facebook  YouTube 

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Sign up for alerts
  • About us
    • About Development
    • About the Node
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contacts
    • Subscriptions
    • Feedback
JOURNAL ARTICLES
Fate and function of the ventral ectodermal ridge during mouse tail development
D.C. Goldman, G.R. Martin, P.P. Tam
Development 2000 127: 2113-2123;
D.C. Goldman
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
G.R. Martin
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
P.P. Tam
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & metrics
  • PDF
Loading

Summary

In the mouse embryo, the body axis continues to develop after gastrulation as a tail forms at the posterior end of the embryo. Little is known about what controls outgrowth and patterning of the tail, but it has been speculated that the ventral ectodermal ridge (VER), a morphologically distinct ectoderm on the ventral surface near the tip of the tail, is a source of signals that regulate tail development (Gruneberg, H. (1956). Nature 177, 787–788). We tested this hypothesis by ablating all or part of the VER and assessing the effects of such ablations on the development of tail explants cultured in vitro. The data showed that the VER produces signals necessary for somitogenesis in the tail and that the cells that produce these signals are localized in the middle and posterior region of the VER. Dye labeling experiments revealed that cells from these regions move anteriorly within the VER and eventually exit it, thereby colonizing the ventral surface ectoderm anterior to the VER. In situ hybridization analysis showed that the genes encoding the signaling molecules FGF17 and BMP2 are specifically expressed in the VER. Assays for gene expression in VER-ablated and control tails were performed to identify targets of VER signaling. The data showed that the VER is required for expression of the gene encoding the BMP antagonist noggin in the tail ventral mesoderm, leading us to speculate that one of the major functions of the VER in tail development is to regulate BMP activity.

REFERENCES

    1. Anderson S. A.,
    2. Qiu M.,
    3. Bulfone A.,
    4. Eisenstat D. D.,
    5. Meneses J.,
    6. Pedersen R.,
    7. Rubenstein J. L.
    (1997) Mutations of the homeobox genes Dlx-1 and Dlx-2 disrupt the striatal subventricular zone and differentiation of late born striatal neurons. Neuron 19, 27–37
    OpenUrlCrossRefPubMedWeb of Science
    1. Ang S. L.,
    2. Wierda A.,
    3. Wong D.,
    4. Stevens K. A.,
    5. Cascio S.,
    6. Rossant J.,
    7. Zaret K. S.
    (1993) The formation and maintenance of the definitive endoderm lineage in the mouse: involvement of HNF3/forkhead proteins. Development 119, 1301–1315
    OpenUrlAbstract
    1. Bettenhausen B.,
    2. Hrabe de Angelis M.,
    3. Simon D.,
    4. Guenet J. L.,
    5. Gossler A.
    (1995) Transient and restricted expression during mouse embryogenesis of Dll1, a murine gene closely related to Drosophila Delta. Development 121, 2407–2418
    OpenUrlAbstract
    1. Candia A. F.,
    2. Hu J.,
    3. Crosby J.,
    4. Lalley P. A.,
    5. Noden D.,
    6. Nadeau J. H.,
    7. Wright C. V.
    (1992) Mox-1 and Mox-2 define a novel homeobox gene subfamily and are differentially expressed during early mesodermal patterning in mouse embryos. Development 116, 1123–1136
    OpenUrlAbstract/FREE Full Text
    1. Casci T.,
    2. Vinos J.,
    3. Freeman M.
    (1999) Sprouty, an intracellular inhibitor of Ras signaling. Cell 96, 655–665
    OpenUrlCrossRefPubMedWeb of Science
    1. Catala M.,
    2. Teillet M. A.,
    3. De Robertis E. M.,
    4. Le Douarin M. L.
    (1996) A spinal cord fate map in the avian embryo: while regressing, Hensen's node lays down the notochord and floor plate thus joining the spinal cord lateral walls. Development 122, 2599–2610
    OpenUrlAbstract
    1. Catala M.,
    2. Teillet M. A.,
    3. Le Douarin N. M.
    (1995) Organization and development of the tail bud analyzed with the quail-chick chimaera system. Mech. Dev 51, 51–65
    OpenUrlCrossRefPubMedWeb of Science
    1. Chapman D. L.,
    2. Agulnik I.,
    3. Hancock S.,
    4. Silver L. M.,
    5. Papaioannou V. E.
    (1996) Tbx6, a mouse T-Box gene implicated in paraxial mesoderm formation at gastrulation. Dev. Biol 180, 534–542
    OpenUrlCrossRefPubMedWeb of Science
    1. Chapman D. L.,
    2. Papaioannou V. E.
    (1998) Three neural tubes in mouse embryos with mutations in the T-box gene Tbx6. Nature 391, 695–697
    OpenUrlCrossRefPubMed
    1. Chesley P.
    (1935) Development of the short-tailed mutant in the house mouse. J. Exp. Zool 70, 429–459
    OpenUrlCrossRefWeb of Science
    1. Colvin J. S.,
    2. Feldman B.,
    3. Nadeau J. H.,
    4. Goldfarb M.,
    5. Ornitz D. M.
    (1999) Genomic organization and embryonic expression of the mouse fibroblast growth factor 9 gene. Dev. Dyn 216, 72–88
    OpenUrlCrossRefPubMedWeb of Science
    1. Crossley P. H.,
    2. Martin G. R.
    (1995) The mouse Fgf8 gene encodes a family of polypeptides and is expressed in regions that direct outgrowth and patterning in the developing embryo. Development 121, 439–451
    OpenUrlAbstract
    1. Fallon J.,
    2. Lopez A.,
    3. Ros M.,
    4. Savage M.,
    5. Olwin B.,
    6. Simandl B.
    (1994) FGF-2: Apical ectodermal ridge growth signal for chick limb development. Science 264, 104–107
    OpenUrlAbstract/FREE Full Text
    1. Gajovic S.,
    2. Kostovic-Knezevic L.
    (1995) Ventral ectodermal ridge and ventral ectodermal groove: two distinct morphological features in the developing rat embryo tail. Anat. Embryol 192, 181–187
    OpenUrlPubMed
    1. Ganan Y.,
    2. Macias D.,
    3. Duterque-Coquillaud M.,
    4. Ros M. A.,
    5. Hurle J. M.
    (1996) Role of TGF betas and BMPs as signals controlling theposition of the digits and the areas of interdigital cell death in the developing chick limb autopod. Development 122, 2349–2357
    OpenUrlAbstract
    1. Gazzerro E.,
    2. Gangji V.,
    3. Canalis E.
    (1998) Bone morphogenetic proteins induce the expression of noggin, which limits their activity in cultured rat osteoblasts. J. Clin. Invest 102, 2106–2114
    OpenUrlCrossRefPubMedWeb of Science
    1. Gofflot F.,
    2. Hall M.,
    3. Morriss-Kay G. M.
    (1997) Genetic patterning of the developing mouse tail at the time of posterior neuropore closure. Dev. Dyn 210, 431–445
    OpenUrlCrossRefPubMedWeb of Science
    1. Gossler A.,
    2. Hrabe de Angelis M.
    (1998) Somitogenesis. Curr. Top. Dev. Biol 38, 225–287
    OpenUrlPubMedWeb of Science
    1. Graham A.,
    2. Francis-West P.,
    3. Brickell P.,
    4. Lumsden A.
    (1994) The signalling molecule BMP4 mediates apoptosis in the rhombencephalic neural crest. Nature 372, 684–686
    OpenUrlCrossRefPubMed
    1. Greco T. L.,
    2. Takada S.,
    3. Newhouse M. M.,
    4. McMahon J. A.,
    5. McMahon A. P.,
    6. Camper S. A.
    (1996) Analysis of the vestigial tail mutation demonstrates that Wnt-3a gene dosage regulates mouse axial development. Genes Dev 10, 313–324
    OpenUrlAbstract/FREE Full Text
    1. Griffith C. M.,
    2. Wiley M. J.,
    3. Sanders E. J.
    (1992) The vertebrate tail bud: three germ layers from one tissue. Anat. Embryol 185, 101–113
    OpenUrlPubMed
    1. Gruneberg H.
    (1956) A ventral ectodermal ridge of the tail in mouse embryos. Nature 177, 787–788
    OpenUrlPubMed
    1. Hacohen N.,
    2. Kramer S.,
    3. Sutherland D.,
    4. Hiromi Y.,
    5. Krasnow M. A.
    (1998) sprouty encodes a novel antagonist of FGF signaling that patterns apical branching of the Drosophila airways. Cell 92, 253–263
    OpenUrlCrossRefPubMedWeb of Science
    1. Heikinheimo M.,
    2. Lawshe A.,
    3. Shackleford G. M.,
    4. Wilson D. B.,
    5. MacArthur C. A.
    (1994) Fgf-8 expression in the post-gastrulation mouse suggests roles in the development of the face, limbs, and central nervous system. Mech. Dev 48, 129–138
    OpenUrlCrossRefPubMedWeb of Science
    1. Hogan B. L. M.
    (1996) Bone morphogenetic proteins: multifunctional regulators of vertebrate development. Genes Dev 10, 1580–1594
    OpenUrlFREE Full Text
    1. Hrabe de Angelis M.,
    2. McIntyre J., 2nd,
    3. Gossler A.
    (1997) Maintenance of somite borders in mice requires the Delta homologue Dll1. Nature 386, 717–721
    OpenUrlCrossRefPubMedWeb of Science
    1. Hsu D. R.,
    2. Economides A. N.,
    3. Wang X.,
    4. Eimon P. M.,
    5. Harland R. M.
    (1998) The Xenopus dorsalizing factor Gremlin identifies a novel family of secreted proteins that antagonize BMP activities. Mol. Cell 1, 673–683
    OpenUrl
    1. Jones C. M.,
    2. Lyons K. M.,
    3. Hogan B. L.
    (1991) Involvement of Bone Morphogenetic Protein-4 (BMP-4) and Vgr-1 in morphogenesis and neurogenesis in the mouse. Development 111, 531–542
    OpenUrlAbstract
    1. Kramer S.,
    2. Hacohen N.,
    3. Okabe M.,
    4. Krasnow M. A.,
    5. Hiromi Y.
    (1999) Sprouty: a common antagonist of FGF and EGF signaling pathways in Drosophila. Development 126, 2515–2525
    OpenUrlAbstract
    1. Lamb T. M.,
    2. Knecht A. K.,
    3. Smith W. C.,
    4. Stachel S. E.,
    5. Economides A. N.,
    6. Stahl N.,
    7. Yancopolous G. D.,
    8. Harland R. M.
    (1993) Neural induction by the secreted polypeptide noggin. Science 262, 713–718
    OpenUrlAbstract/FREE Full Text
    1. Le Douarin N. M.,
    2. Teillet M. A.,
    3. Catala M.
    (1998) Neurulation in amniote vertebrates: a novel view deduced from the use of quail-chick chimeras. Int. J. Dev. Biol 42, 909–916
    OpenUrlPubMedWeb of Science
    1. Lyons K. M.,
    2. Hogan B. L.,
    3. Robertson E. J.
    (1995) Colocalization of BMP 7 and BMP 2 RNAs suggests that these factors cooperatively mediate tissue interactions during murine development. Mech. Dev 50, 71–83
    OpenUrlCrossRefPubMedWeb of Science
    1. Lyons K. M.,
    2. Pelton R. W.,
    3. Hogan B. L.
    (1990) Organogenesis and pattern formation in the mouse: RNA distribution patterns suggest a role for bone morphogenetic protein-2A (BMP-2A). Development 109, 833–844
    OpenUrlAbstract/FREE Full Text
    1. Mahmood R.,
    2. Bresnick J.,
    3. Hornbruch A.,
    4. Mahony C.,
    5. Morton N.,
    6. Colquhoun K.,
    7. Martin P.,
    8. Lumsden A.,
    9. Dickson C.,
    10. Mason I.
    (1995) A role for FGF-8 in the initiation and maintenance of vertebrate limb bud outgrowth. Curr. Biol 5, 797–806
    OpenUrlCrossRefPubMedWeb of Science
    1. Mansour S. L.,
    2. Goddard J. M.,
    3. Capecchi M. R.
    (1993) Mice homozygous for a targeted disruption of the proto-oncogene int-2 have developmental defects in the tail and inner ear. Development 117, 13–28
    OpenUrlAbstract/FREE Full Text
    1. Martin G. R.
    (1998) The roles of FGFs in the early development of vertebrate limbs. Genes Dev 12, 1571–1586
    OpenUrlFREE Full Text
    1. Maruoka Y.,
    2. Ohbayashi N.,
    3. Hoshikawa M.,
    4. Itoh N.,
    5. Hogan B. L. M.,
    6. Furuta Y.
    (1998) Comparison of the expression of three highly related genes, Fgf8, Fgf17 and Fgf18, in the mouse embryo. Mech. Dev 74, 175–177
    OpenUrlCrossRefPubMedWeb of Science
    1. McGrew M. J.,
    2. Dale J. K.,
    3. Fraboulet S.,
    4. Pourquie O.
    (1998) The lunatic fringe gene is a target of the molecular clock linked to somite segmentation in avian embryos. Curr. Biol 8, 979–982
    OpenUrlCrossRefPubMedWeb of Science
    1. McMahon J. A.,
    2. Takada S.,
    3. Zimmerman L. B.,
    4. Fan C. M.,
    5. Harland R. M.,
    6. McMahon A. P.
    (1998) Noggin-mediated antagonism of BMP signaling is required for growth and patterning of the neural tube and somite. Genes Dev 12, 1438–1452
    OpenUrlAbstract/FREE Full Text
    1. McWhirter J. R.,
    2. Goulding M.,
    3. Weiner J. A.,
    4. Chun J.,
    5. Murre C.
    (1997) A novel fibroblast growth factor gene expressed in the developing nervous system is a downstream target of the chimeric homeodomain oncoprotein E2A-Pbx1. Development 124, 3221–3232
    OpenUrlAbstract
    1. Miller S. A.,
    2. Briglin A.
    (1996) Apoptosis removes chick embryo tail gut and remnant of the primitive streak. Dev. Dyn 206, 212–218
    OpenUrlCrossRefPubMed
    1. Minowada G.,
    2. Jarvis L. A.,
    3. Chi C. L.,
    4. Neubuser A.,
    5. Sun X.,
    6. Hacohen N.,
    7. Krasnow M. A.,
    8. Martin G. R.
    (1999) Vertebrate Sprouty genes are induced by FGF signaling and can cause chondrodysplasia when overexpressed. Development 126, 4465–4475
    OpenUrlAbstract
    1. Nievelstein R. A.,
    2. Hartwig N. G.,
    3. Vermeij-Keers C.,
    4. Valk J.
    (1993) Embryonic development of the mammalian caudal neural tube. Teratology 48, 21–31
    OpenUrlCrossRefPubMed
    1. Niswander L.,
    2. Martin G. R.
    (1992) Fgf-4 expression during gastrulation, myogenesis, limb and tooth development in the mouse. Development 114, 755–768
    OpenUrlAbstract
    1. Niswander L.,
    2. Tickle C.,
    3. Vogel A.,
    4. Booth I.,
    5. Martin G. R.
    (1993) FGF-4 replaces the apical ectodermal ridge and directs outgrowth and patterning of the limb. Cell 75, 579–587
    OpenUrlCrossRefPubMedWeb of Science
    1. Packard D. S., Jr.,
    2. Meier S.
    (1983) An experimental study of the somitomeric organization of the avian segmental plate. Dev. Biol 97, 191–202
    OpenUrlCrossRefPubMed
    1. Piccolo S.,
    2. Sasai Y.,
    3. Lu B.,
    4. De Robertis E. M.
    (1996) Dorsoventral patterning in Xenopus: inhibition of ventral signals by direct binding of chordin to BMP-4. Cell 86, 589–598
    OpenUrlCrossRefPubMedWeb of Science
    1. Pizette S.,
    2. Niswander L.
    (1999) BMPs negatively regulate structure and function of the limb apical ectodermal ridge. Development 126, 883–894
    OpenUrlAbstract
    1. Reaume A. G.,
    2. Conlon R. A.,
    3. Zirngibl R.,
    4. Yamaguchi T. P.,
    5. Rossant J.
    (1992) Expression analysis of a Notch homologue in the mouse embryo. Dev. Biol 154, 377–387
    OpenUrlCrossRefPubMedWeb of Science
    1. Reich A.,
    2. Sapir A.,
    3. Shilo B.
    (1999) Sprouty is a general inhibitor of receptor tyrosine kinase signaling. Development 126, 4139–4147
    OpenUrlAbstract
    1. Rowe D. A.,
    2. Fallon J. F.
    (1981) The effect of removing posterior apical ectodermal ridge of the chick wing and leg on pattern formation. J. Embryol. Exp. Morph 65, 309–325
    1. Sasaki H.,
    2. Hogan B. L.
    (1993) Differential expression of multiple fork head related genes during gastrulation and axial pattern formation in the mouse embryo. Development 118, 47–59
    OpenUrlAbstract
    1. Saunders J. W., Jr
    (1948) The proximo-distal sequence of origin of the parts of the chick wing and the role of the ectoderm. J. Exp. Zool 108, 363–403
    OpenUrlCrossRefPubMedWeb of Science
    1. Schmidt C.,
    2. Christ B.,
    3. Patel K.,
    4. Brand-Saberi B.
    (1998) Experimental induction of BMP-4 expression leads to apoptosis in the paraxial and lateral plate mesoderm. Dev. Biol 202, 253–263
    OpenUrlCrossRefPubMed
    1. Schoenwolf G. C.
    (1977) Tail (end) bud contributions to the posterior region of the chick embryo. J. Exp. Zool 201, 227–246
    OpenUrlCrossRef
    1. Schoenwolf G. C.
    (1978) Effects of complete tail bud extirpation on early development of the posterior region of the chick embryo. Anat. Rec 192, 289–295
    OpenUrlCrossRefPubMed
    1. Schoenwolf G. C.
    (1981) Morphogenetic processes involved in the remodeling of the tail region of the chick embryo. Anat. Embryol 162, 183–197
    OpenUrlCrossRefPubMed
    1. Schubert F. R.,
    2. Fainsod A.,
    3. Gruenbaum Y.,
    4. Gruss P.
    (1995) Expression of the novel murine homeobox gene Sax-1 in the developing nervous system. Mech. Dev 51, 99–114
    OpenUrlCrossRefPubMedWeb of Science
    1. Smith W. C.
    (1999) TGF beta inhibitors. New and unexpected requirements in vertebrate development. Trends Genet 15, 3–5
    OpenUrlCrossRefPubMedWeb of Science
    1. Sturm K.,
    2. Tam P. P. L.
    (1993) Isolation and culture of whole postimplantation embryos and germ layer derivatives. Methods Enzymol 225, 164–190
    OpenUrlCrossRefPubMedWeb of Science
    1. Summerbell D.
    (1974) A quantitative analysis of the effect of excision of the AER from the chick limb-bud. J. Embryol. Exp. Morph 32, 651–660
    OpenUrlPubMedWeb of Science
    1. Takada S.,
    2. Stark K. L.,
    3. Shea M. J.,
    4. Vassileva G.,
    5. McMahon J. A.,
    6. McMahon A. P.
    (1994) Wnt-3a regulates somite and tailbud formation in the mouse embryo. Genes Dev 8, 174–189
    OpenUrlAbstract/FREE Full Text
    1. Tam P. P. L.
    (1981) The control of somitogenesis in mouse embryos. J. Embryol. Exp. Morph 65, 103–128
    1. Tam P. P. L.
    (1984) The histogenetic capacity of tissues in the caudal endofthe embryonic axis of the mouse. J. Embryol. Exp. Morph 82, 253–266
    OpenUrlPubMedWeb of Science
    1. Tam P. P. L.
    (1986) A study of the pattern of prospective somites in the presomitic mesoderm of mouse embryos. J. Embryol. Exp. Morph 92, 269–285
    OpenUrlPubMedWeb of Science
    1. Tam P. P. L.,
    2. Beddington R. S.
    (1987) The formation of mesodermal tissues in the mouse embryo during gastrulation and early organogenesis. Development 99, 109–126
    OpenUrlAbstract
    1. Tam P. P. L.,
    2. Goldman D.,
    3. Camus A.,
    4. Schoenwolf G. C.
    (2000) Early events in somitogenesis in higher vertebrates: allocation of precursor cells during gastrulation and the organization of a meristic pattern in the paraxial mesoderm. Curr. Topics Dev. Biol 47, 1–32
    OpenUrlCrossRefPubMed
    1. Tam P. P. L.,
    2. Meier S.,
    3. Jacobson A. G.
    (1982) Differentiation of the metameric pattern in the embryonic axis of the mouse II. Somitomeric organization of the presomitic mesoderm. Differentiation 21, 109–122
    OpenUrlCrossRefPubMedWeb of Science
    1. Tam P. P. L.,
    2. Tan S. S.
    (1992) The somitogenetic potential of cells in the primitive streak and the tail bud of the organogenesis-stage mouse embryo. Development 115, 703–715
    OpenUrlAbstract/FREE Full Text
    1. Tam P. P. L.,
    2. Trainor P. A.
    (1994) Specification and segmentation of the paraxial mesoderm. Anat. Embryol 189, 275–305
    OpenUrlPubMed
    1. Tonegawa A.,
    2. Funayama N.,
    3. Ueno N.,
    4. Takahashi Y.
    (1997) Mesodermal subdivision along the mediolateral axis in chicken controlled by different concentrations of BMP-4. Development 124, 1975–1984
    OpenUrlAbstract
    1. Tonegawa A.,
    2. Takahashi Y.
    (1998) Somitogenesis controlled by Noggin. Dev. Biol 202, 172–182
    OpenUrlCrossRefPubMed
    1. Trumpp A.,
    2. Depew M. J.,
    3. Rubenstein J. L. R.,
    4. Bishop J. M.,
    5. Martin G. R.
    (1999) Cre-mediated gene inactivation demonstrates that FGF8 is required for cell survival and patterning of the first branchial arch. Genes Dev 13, 3136–3148
    OpenUrlAbstract/FREE Full Text
    1. Vargesson N.,
    2. Clarke J. D. W.,
    3. Vincent K.,
    4. Coles C.,
    5. Wolpert L.,
    6. Tickle C.
    (1997) Cell fate in the chick limb bud and relationship to gene expression. Development 124, 1909–1918
    OpenUrlAbstract
    1. Wilkinson D. G.,
    2. Bhatt S.,
    3. Herrmann B. G.
    (1990) Expression pattern of the mouse T gene and its role in mesoderm formation. Nature 343, 657–659
    OpenUrlCrossRefPubMedWeb of Science
    1. Wilkinson D. G.,
    2. Peters G.,
    3. Dickson C.,
    4. McMahon A. P.
    (1988) Expression of the FGF-related proto-oncogene int-2 during gastrulation and neurulation in the mouse. EMBO J 7, 691–695
    OpenUrlPubMedWeb of Science
    1. Wilson V.,
    2. Beddington R. S.
    (1996) Cell fate and morphogenetic movement in the late mouse primitive streak. Mech. Dev 55, 79–89
    OpenUrlCrossRefPubMedWeb of Science
    1. Yamaguchi T. P.,
    2. Bradley A.,
    3. McMahon A. P.,
    4. Jones S.
    (1999) A Wnt5a pathway underlies outgrowth of multiple structures in the vertebrate embryo. Development 126, 1211–1223
    OpenUrlAbstract
    1. Zhang H.,
    2. Bradley A.
    (1996) Mice deficient for BMP2 are nonviable and have defects in amnion/chorion and cardiac development. Development 122, 2977–2986
    OpenUrlAbstract
    1. Zimmerman L. B.,
    2. De Jesus-Escobar J. M.,
    3. Harland R. M.
    (1996) The Spemann organizer signal noggin binds and inactivates bone morphogenetic protein 4. Cell 86, 599–606
    OpenUrlCrossRefPubMedWeb of Science
    1. Zou H.,
    2. Niswander L.
    (1996) Requirement for BMP signaling in interdigital apoptosis and scale formation. Science 272, 738–741
    OpenUrlAbstract/FREE Full Text
Previous ArticleNext Article
Back to top
Previous ArticleNext Article

This Issue

 Download PDF

Email

Thank you for your interest in spreading the word on Development.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Fate and function of the ventral ectodermal ridge during mouse tail development
(Your Name) has sent you a message from Development
(Your Name) thought you would like to see the Development web site.
Share
JOURNAL ARTICLES
Fate and function of the ventral ectodermal ridge during mouse tail development
D.C. Goldman, G.R. Martin, P.P. Tam
Development 2000 127: 2113-2123;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Citation Tools
JOURNAL ARTICLES
Fate and function of the ventral ectodermal ridge during mouse tail development
D.C. Goldman, G.R. Martin, P.P. Tam
Development 2000 127: 2113-2123;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Alerts

Please log in to add an alert for this article.

Sign in to email alerts with your email address

Article navigation

  • Top
  • Article
  • Info & metrics
  • PDF

Related articles

Cited by...

More in this TOC section

  • Morphogenetic cell movements in the middle region of the dermomyotome dorsomedial lip associated with patterning and growth of the primary epaxial myotome
  • Germline and developmental roles of the nuclear transport factor importin (α)3 in C. elegans
  • Monofocal origin of telencephalic oligodendrocytes in the anterior entopeduncular area of the chick embryo
Show more JOURNAL ARTICLES

Similar articles

Other journals from The Company of Biologists

Journal of Cell Science

Journal of Experimental Biology

Disease Models & Mechanisms

Biology Open

Advertisement

Interviews — Bénédicte Sanson and Kate Storey

Bénédicte Sanson and Kate Storey

Hear from Bénédicte Sanson, winner of the BSDB’s Cheryll Tickle medal, and Kate Storey, winner of the BSDB’s Waddington Medal, as they discuss their research, the future of the field and the importance of collaboration.


Review Commons launches

We're excited to be an affiliate journal for Review Commons, the ASAPbio/EMBO platform for high-quality journal-independent peer-review in the life sciences, which went live on 09 December.


Have you heard about our Travelling Fellowships?

Peter Baillie-Johnson in Switzerland

Early-career researchers can apply for up to £2,500 to offset the cost of travel and expenses to make collaborative visits to other labs around the world. Read about Peter’s experience in Switzerland, where he joined forces with the Lutolf lab to refine a protocol for producing gastruloids.


Publishing peer review reports

To continue working towards transparency around the editorial process, Development now publishes a ‘Peer review history file’ alongside published papers. Read more about the policy and see the reports for yourself in one the first papers to publish the reports (under the ‘Info & metrics’ tab).


Development at a glance — Cell interactions in collective cell migration

Extract from the poster showing specific cell-cell interactions in metastasis.

Take a look at the latest poster and accompanying article by Denise Montell and her colleagues from the University of California, where they describe a sampling of both known and new cells that migrate collectively in vivo.

Articles

  • Accepted manuscripts
  • Issue in progress
  • Latest complete issue
  • Issue archive
  • Archive by article type
  • Special issues
  • Subject collections
  • Sign up for alerts

About us

  • About Development
  • About the Node
  • Editors and board
  • Editor biographies
  • Travelling Fellowships
  • Grants and funding
  • Journal Meetings
  • Workshops
  • The Company of Biologists

For authors

  • Submit a manuscript
  • Aims and scope
  • Presubmission enquiries
  • Article types
  • Manuscript preparation
  • Cover suggestions
  • Editorial process
  • Promoting your paper
  • Open Access
  • Biology Open transfer

Journal info

  • Journal policies
  • Rights and permissions
  • Media policies
  • Reviewer guide
  • Sign up for alerts

Contact

  • Contact Development
  • Subscriptions
  • Advertising
  • Feedback

 Twitter   YouTube   LinkedIn

© 2019   The Company of Biologists Ltd   Registered Charity 277992