Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Accepted manuscripts
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Sign up for alerts
  • About us
    • About Development
    • About the Node
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contacts
    • Subscriptions
    • Advertising
    • Feedback
    • For library administrators
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

User menu

  • Log in
  • Log out

Search

  • Advanced search
Development
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

supporting biologistsinspiring biology

Development

  • Log in
Advanced search

RSS  Twitter  Facebook  YouTube 

  • Home
  • Articles
    • Accepted manuscripts
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Sign up for alerts
  • About us
    • About Development
    • About the Node
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contacts
    • Subscriptions
    • Advertising
    • Feedback
    • For library administrators
JOURNAL ARTICLES
Rac1 mutations produce aberrant epithelial differentiation in the developing and adult mouse small intestine
T.S. Stappenbeck, J.I. Gordon
Development 2000 127: 2629-2642;
T.S. Stappenbeck
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J.I. Gordon
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & metrics
  • PDF
Loading

Summary

The mouse small intestinal epithelium undergoes continuous renewal throughout life. Previous studies suggest that differentiation of this epithelium is regulated by instructions that are received as cells migrate along crypt-villus units. The nature of the instructions and their intracellular processing remain largely undefined. In this report, we have used genetic mosaic analysis to examine the role of Rac1 GTPase-mediated signaling in controlling differentiation. A constitutively active mutation (Rac1Leu61) or a dominant negative mutation (Rac1Asn17) was expressed in the 129/Sv embryonic stem cell-derived component of the small intestine of C57Bl/6-ROSA26<->129/Sv mice. Rac1Leu61 induces precocious differentiation of members of the Paneth cell and enterocytic lineages in the proliferative compartment of the fetal gut, without suppressing cell division. Forced expression of the dominant negative mutation inhibits epithelial differentiation, without affecting cell division, and slows enterocytic migration along crypt-villus units. The effects produced by Rac1Leu61 or Rac1Asn17 in the 129/Sv epithelium do not spread to adjacent normal C57Bl/6 epithelial cells. These results provide in vivo evidence that Rac1 is involved in the import and intracellular processing of signals that control differentiation of a mammalian epithelium.

REFERENCES

    1. Aspenström P.
    (1999) Effectors of the Rho GTPases. Curr. Opin. Cell Biol 11, 95–102
    OpenUrlCrossRefPubMedWeb of Science
    1. Bjerknes M.,
    2. Cheng H.
    (1981) The stem-cell zone of the small intestinal epithelium. I. Evidence from Paneth cells in the adult mouse. Am. J. Anat 160, 51–63
    OpenUrlCrossRefPubMedWeb of Science
    1. Bjerknes M.,
    2. Cheng H.
    (1981) The stem-cell zone of the small intestinal epithelium. III. Evidence from columnar, enteroendocrine, and mucous cells in the adult mouse. Am. J. Anat 160, 77–91
    OpenUrlCrossRefPubMedWeb of Science
    1. Bjerknes M.,
    2. Cheng H.
    (1999) Clonal analysis of mouse intestinal epithelial progenitors. Gastroenterology 116, 7–14
    OpenUrlCrossRefPubMedWeb of Science
    1. Bradford M. M.
    (1976) A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem 72, 254–259
    OpenUrlCrossRef
    1. Braga V. M. M.,
    2. Machesky L. M.,
    3. Hall A.,
    4. Hotchin N. A.
    (1997) The small GTPases Rho and Rac are required for the establishment of cadherin-dependent cell-cell contacts. J. Cell Biol 137, 1421–1431
    OpenUrlAbstract/FREE Full Text
    1. Bry L.,
    2. Falk P.,
    3. Huttner K.,
    4. Ouellette A.,
    5. Midvedt T.,
    6. Gordon J. I.
    (1994) Paneth cell differentiation in the developing intestine of normal and transgenic mice. Proc. Natl. Acad. Sci. USA 91, 10335–10339
    OpenUrlAbstract/FREE Full Text
    1. Calvert R.,
    2. Pothier P.
    (1990) Migration of fetal intestinal intervillus cells in neonatal mice. Anat. Rec 227, 199–206
    OpenUrlCrossRefPubMed
    1. Cheng H.,
    2. Merzel J.,
    3. Leblond C. P.
    (1969) Renewal of Paneth cells in the small intestine of the mouse. Am. J. Anat 126, 507–525
    OpenUrlCrossRefPubMedWeb of Science
    1. Cheng H.
    (1974) Origin, differentiation, and renewal of the four main epithelial cell types in the mouse small intestine. II. Mucous cells. Am. J. Anat 141, 481–502
    OpenUrlCrossRefPubMedWeb of Science
    1. Cheng H.
    (1974) Origin, differentiation, and renewal of the four main epithelial cell types in the mouse small intestine. IV. Paneth cells. Am. J. Anat 141, 521–536
    OpenUrlCrossRefPubMedWeb of Science
    1. Cheng H.,
    2. Leblond C. P.
    (1974) Origin, differentiation, and renewal of the four main epithelial cell types in the mouse small intestine. I. Columnar cells. Am. J. Anat 141, 461–480
    OpenUrlCrossRefPubMedWeb of Science
    1. Cheng H.,
    2. Leblond C. P.
    (1974) Origin, differentiation, and renewal of the four main epithelial cell types in the mouse small intestine. III. Entero-endocrine cells. Am. J. Anat 141, 503–520
    OpenUrlCrossRefPubMedWeb of Science
    1. Cheng H.,
    2. Leblond C. P.
    (1974) Origin, differentiation, and renewal of the four main epithelial cell types in the mouse small intestine. V. Unitarian theory of the origin of the four epithelial subtypes. Am. J. Anat 141, 537–561
    OpenUrlCrossRefPubMedWeb of Science
    1. Cohn S. M.,
    2. Simon T. C.,
    3. Roth K. A.,
    4. Birkenmeier E. H.,
    5. Gordon J. I.
    (1992) Use of transgenic mice to map cis -acting elements in the intestinal fatty acid binding protein (Fabpi) that control its cell lineage-specific and regional patterns of expression along the duodenal-colonic and crypt-villus axes of the gut epithelium. J. Cell Biol 119, 27–44
    OpenUrlAbstract/FREE Full Text
    1. Coso O. A.,
    2. Chiariello M.,
    3. Yu J.-C.,
    4. Teramoto H.,
    5. Crespo P.,
    6. Xu N.,
    7. Miki T.,
    8. Gutkind J. S.
    (1995) The small GTP-binding proteins Rac1 and Cdc42 regulate the activity of the JNK/SAPK signaling pathway. Cell 81, 1137–1146
    OpenUrlCrossRefPubMedWeb of Science
    1. Eaton S.,
    2. Auvinen P.,
    3. Luo L.,
    4. Jan Y. N.,
    5. Simons K.
    (1995) CDC42 and Rac1 control different actin-dependent processes in the Drosophila wing disc epithelium. J. Cell Biol 131, 151–164
    OpenUrlAbstract/FREE Full Text
    1. Evan G. I.,
    2. Lewis G. K.,
    3. Ramsey G.,
    4. Bishop J. M.
    (1985) Isolation of monoclonal antibodies specific for human c-myc proto-oncogene product. Mol. Cell. Biol 5, 3610–3616
    OpenUrlAbstract/FREE Full Text
    1. Falk P.,
    2. Roth K. A.,
    3. Gordon J. I.
    (1994) Lectins are sensitive tools for defining the differentiation programs of mouse gut epithelial cell lineages. Am. J. Phys 266, 987–.
    OpenUrl
    1. Garabedian E. M.,
    2. Roberts L. J.,
    3. McNevin M. S.,
    4. Gordon J. I.
    (1997) Examining the role of Paneth cells in the small intestine by lineage ablation in transgenic mice. J. Biol. Chem 272, 23729–23740
    OpenUrlAbstract/FREE Full Text
    1. Hall A.
    (1998) Rho GTPases and the actin cytoskeleton. Science 279, 509–514
    OpenUrlAbstract/FREE Full Text
    1. Hall P. A.,
    2. Coates P. J.,
    3. Ansari B.,
    4. Hopwood D.
    (1994) Regulation of cell number in the mammalian gastrointestinal tract: the importance of apoptosis. J. Cell Sci 107, 3569–3577
    OpenUrlAbstract/FREE Full Text
    1. Harwig S. S.,
    2. Tan L.,
    3. Qu X.,
    4. Cho Y.,
    5. Eisenhauer P. B.,
    6. Lehrer R. I.
    (1995) Bactericidal properties of murine intestinal phospholipase A2. J. Clin. Invest 95, 603–610
    1. Heath J. P.
    (1996) Epithelial cell migration in the intestine. Cell Biol. Int 20, 139–146
    OpenUrlCrossRefPubMedWeb of Science
    1. Hermiston M. L.,
    2. Gordon J. I.
    (1995) In vivo analysis of cadherin function in the mouse small intestinal epithelium: essential roles in adhesion, maintenance of differentiation, and regulation of programmed cell death. J. Cell Biol 129, 489–506
    OpenUrlAbstract/FREE Full Text
    1. Hermiston M. L.,
    2. Gordon J. I.
    (1995) Inflammatory bowel disease and adenomas in mice expressing a dominant negative N-cadherin. Science 270, 1203–1207
    OpenUrlAbstract/FREE Full Text
    1. Hermiston M. L.,
    2. Wong M. H.,
    3. Gordon J. I.
    (1996) Forced expression of E-cadherin in the mouse intestinal epithelium slows cell migration andprovides evidence for nonautonomous regulation of cell fate in a self-renewing system. Genes Dev 10, 985–996
    OpenUrlAbstract/FREE Full Text
    1. Hill C. S.,
    2. Wynne J.,
    3. Treisman R.
    (1995) The Rho family GTPases RhoA, Rac1, and Cdc42Hs regulate transcriptional activation by SRF. Cell 81, 1159–1170
    OpenUrlCrossRefPubMedWeb of Science
    1. Hooper L. V.,
    2. Xu J.,
    3. Falk P. G.,
    4. Midvedt T.,
    5. Gordon J. I.
    (1999) A molecular sensor that allows a gut commensal to control its nutrient foundation in a competitive ecosystem. Proc. Natl. Acad. Sci. USA 96, 9833–9838
    OpenUrlAbstract/FREE Full Text
    1. Hordijk P. L.,
    2. ten Klooster J. P.,
    3. van der Kammen R. A.,
    4. Michiels F.,
    5. Oomen L. C.,
    6. Collard J. G.
    (1997) Inhibition of invasion of epithelial cells by Tiam1-Rac signaling. Science 278, 1464–1466
    OpenUrlAbstract/FREE Full Text
    1. Jou T. S.,
    2. Nelson W. J.
    (1998) Effects of regulated expression of mutant RhoA and Rac1 small GTPases on the development of epithelial (MDCK) cell polarity. J. Cell Biol 142, 85–100
    OpenUrlAbstract/FREE Full Text
    1. Jou T. S.,
    2. Schneeberger E. E.,
    3. Nelson W. J.
    (1998) Structural and functional regulation of tight junctions by RhoA and Rac1 small GTPases. J. Cell Biol 142, 101–115
    OpenUrlAbstract/FREE Full Text
    1. Kaestner K. H.,
    2. Silberg D. G.,
    3. Traber P. G.,
    4. Schultz G.
    (1997) The mesenchymal winged helix transcription factor Fkh6 is required for the control of gastrointestinal proliferation and differentiation. Genes Dev 11, 1583–1595
    OpenUrlAbstract/FREE Full Text
    1. Kaufmann N.,
    2. Wills Z. P.,
    3. van Vactor D.
    (1998) Drosophila Rac1 controls motor axon guidance. Development 125, 453–461
    OpenUrlAbstract
    1. Keely P. J.,
    2. Westwick J. K.,
    3. Whitehead I. P.,
    4. Der C. J.,
    5. Parise L. V.
    (1997) Cdc42 and Rac1 induce integrin-mediated cell motility and invasiveness through PI(3)K. Nature 390, 632–636
    OpenUrlCrossRefPubMed
    1. Korinek V.,
    2. Barker N.,
    3. Moerer P.,
    4. van Donselaar E.,
    5. Huls G.,
    6. Peters P. J.,
    7. Clevers H.
    (1998) Depletion of epithelial stem-cell compartments in the small intestine of mice lacking Tcf-4. Nature Genet 19, 379–383
    OpenUrlCrossRefPubMedWeb of Science
    1. Korinek V.,
    2. Barker N.,
    3. Willert K.,
    4. Molenaar M.,
    5. Roose J.,
    6. Wagenaar G.,
    7. Markman M.,
    8. Lamers W.,
    9. Destree O.,
    10. Clevers H.
    (1998) Two members of the Tcf family implicated in Wnt/-catenin signaling during embryogenesis in the mouse. Mol. Cell. Biol 18, 1248–1256
    OpenUrlAbstract/FREE Full Text
    1. Lamarche N.,
    2. Tapon N.,
    3. Stowers L.,
    4. Burbelo P. D.,
    5. Aspenström P.,
    6. Bridges T.,
    7. Chant J.,
    8. Hall A.
    (1996) Rac and Cdc42 induce actin polymerization and G1 cell cycle progression independently of p65PAK and the JNK/SAPK MAP kinase cascade. Cell 87, 519–529
    OpenUrlCrossRefPubMedWeb of Science
    1. Lefebvre O.,
    2. Sorokin L.,
    3. Kedinger M.,
    4. Simon-Assmann P.
    (1999). Developmental expression and cellular origin of the laminin2. 4, and5 chains in the intestine. Dev. Biol 210, 135–150
    OpenUrlCrossRefPubMed
    1. Lores P.,
    2. Morin L.,
    3. Luna R.,
    4. Gacon G.
    (1997) Enhanced apoptosis in the thymus of transgenic mice expressing constitutively activated forms of human Rac2 GTPase. Oncogene 15, 601–605
    OpenUrlCrossRefPubMedWeb of Science
    1. Luo L.,
    2. Hensch T. K.,
    3. Ackerman L.,
    4. Barbel S.,
    5. Jan L. Y.,
    6. Jan Y. N.
    (1996) Differential effects of the Rac GTPase on Purkinje cell axons and dendritic trunks and spines. Nature 379, 837–840
    OpenUrlCrossRefPubMedWeb of Science
    1. Mackay D. J.,
    2. Hall A.
    (1998) Rho GTPases. J. Biol. Chem 273, 20685–20688
    OpenUrlFREE Full Text
    1. Merzel J.,
    2. Leblond C. P.
    (1969) Origin and renewal of goblet cells in the epithelium of the mouse small intestine. Am. J. Anat 124, 281–305
    OpenUrlCrossRefPubMed
    1. Minden A.,
    2. Lin A.,
    3. Claret F.-X.,
    4. Abo A.,
    5. Karin M.
    (1995) Selective activation of the JNK signaling cascade and c-Jun transcriptional activity by the small GTPases Rac and Cdc42Hs. Cell 81, 1147–1157
    OpenUrlCrossRefPubMedWeb of Science
    1. Moll J.,
    2. Sansig G.,
    3. Fattori E.,
    4. van der Putten H.
    (1991) The murine rac1 gene: cDNA cloning, tissue distribution and regulated expression of rac1 mRNA by disassembly of actin microfilaments. Oncogene 6, 863–866
    OpenUrlPubMedWeb of Science
    1. Mulherkar R.,
    2. Desai S. J.,
    3. Rao R. S.,
    4. Wagle A. S.,
    5. Deo M. G.
    (1991) Expression of enhancing factor gene and its localization in mouse tissues. Histochemistry 96, 367–370
    OpenUrlCrossRefPubMedWeb of Science
    1. Mulherkar R.,
    2. Rao R. S.,
    3. Wagle A. S.,
    4. Patki V.,
    5. Deo M. G.
    (1993) Enhancing factor, a Paneth cell specific protein from mouse small intestine: predicted amino acid sequence from RT-PCR amplified cDNA and its expression. Biochem. Biophys. Res. Comm 195, 1254–1263
    OpenUrlCrossRefPubMedWeb of Science
    1. Nobes C. D.,
    2. Hall A.
    (1995) Rho, rac and cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia and filopodia. Cell 81, 53–62
    OpenUrlCrossRefPubMedWeb of Science
    1. Nobes C. D.,
    2. Hall A.
    (1999) Rho GTPases control polarity, protrusion, and adhesion during cell movement. J. Cell Biol 144, 1235–1244
    OpenUrlAbstract/FREE Full Text
    1. Olson M. F.,
    2. Ashworth A.,
    3. Hall A.
    (1995) An essential role for Rho, Rac, and Cdc42 GTPases in cell cycle progression through G1. Science 269, 1270–1272
    OpenUrlAbstract/FREE Full Text
    1. Ouellete A. J.
    (1997) Paneth cells and innate immunity in the crypt microenvironment. Gastroenterology 113, 1779–1784
    OpenUrlCrossRefPubMedWeb of Science
    1. Ramalho-Santos M.,
    2. Melton D. A.,
    3. McMahon A. P.
    (2000) Hedgehog signals regulate multiple aspects of gastrointestinal development. Development 127, 2763–2772
    OpenUrlAbstract
    1. Ridley A. J.,
    2. Hall A.
    (1992) The small GTP-binding protein rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors. Cell 70, 389–399
    OpenUrlCrossRefPubMedWeb of Science
    1. Ridley A. J.,
    2. Paterson H. F.,
    3. Johnston C. L.,
    4. Diekmann D.,
    5. Hall A.
    (1992) The small GTP-binding protein rac regulates growth factor-induced membrane ruffling. Cell 70, 401–410
    OpenUrlCrossRefPubMedWeb of Science
    1. Ridley A. J.,
    2. Comoglio P. M.,
    3. Hall A.
    (1995) Regulation of scatter factor/hepatocyte growth factor responses by Ras, Rac and Rho in MDCK cells. Mol. Cell. Biol 15, 1110–1122
    OpenUrlAbstract/FREE Full Text
    1. Roberts A. W.,
    2. Kim C.,
    3. Zhen L.,
    4. Lowe J. B.,
    5. Kapur R.,
    6. Petryniak B.,
    7. Spaetti A.,
    8. Pollock J. D.,
    9. Borneo J. B.,
    10. Bradford G. B.,
    11. Atkinson S. J.,
    12. Dinauer M. C.,
    13. Williams D. A.
    (1999) Deficiency of the hematopoietic cell-specific Rho family GTPase Rac2 is characterized by abnormalities in neutrophil function and host defense. Immunity 10, 183–196
    OpenUrlCrossRefPubMedWeb of Science
    1. Sander E. E.,
    2. van Delft S.,
    3. ten Klooster J. P.,
    4. Reid T.,
    5. van der Kammen R. A.,
    6. Michiels F.,
    7. Collard J. G.
    (1998) Matrix-dependent Tiam1/Rac signaling in epithelial cells promotes either cell-cell adhesion or cell migration and is regulated by phosphatidylinositol 3-kinase. J. Cell Biol 143, 1385–1398
    OpenUrlAbstract/FREE Full Text
    1. Schmidt G. H.,
    2. Winton D. J.,
    3. Ponder B. A.
    (1988) Development of the pattern of cell renewal in the crypt-villus unit of chimaeric mouse small intestine. Development 103, 785–790
    OpenUrlAbstract/FREE Full Text
    1. Schmidt G. H.,
    2. Wilkinson M. M.,
    3. Ponder B. A.
    (1985) Cell migration pathway in the intestinal epithelium: an in situ marker system using mouse aggregation chimeras. Cell 40, 425–429
    OpenUrlCrossRefPubMedWeb of Science
    1. Selsted M. E.,
    2. Miller S. I.,
    3. Henschen A. H.,
    4. Ouellette A. J.
    (1992) Enteric defensins: antibiotic peptide components of intestinal host defense. J. Cell Biol 118, 929–936
    OpenUrlAbstract/FREE Full Text
    1. Steven R.,
    2. Kubiseski T. J.,
    3. Zheng H.,
    4. Kulkarni S.,
    5. Mancillas J.,
    6. Ruiz Morales A.,
    7. Hogue C. W.,
    8. Pawson T.,
    9. Culotti J.
    (1998) UNC-73 activates the Rac GTPase and is required for cell and growth cone migrations in C. elegans. Cell 92, 785–795
    OpenUrlCrossRefPubMedWeb of Science
    1. Sugihara K.,
    2. Nakatsuji N.,
    3. Nakamura K.,
    4. Nakao K.,
    5. Hashimoto R.,
    6. Otani H.,
    7. Sakagami H. H.,
    8. Kondo H.,
    9. Nozawa S.,
    10. Aiba A.,
    11. Katsuki M.
    (1998) Rac1 is required for the formation of three germ layers during gastrulation. Oncogene 17, 3427–3433
    OpenUrlCrossRefPubMedWeb of Science
    1. Sulciner D. J.,
    2. Irani K.,
    3. Yu Z. X.,
    4. Ferrans V. J.,
    5. Goldschmidt-Clermont P.,
    6. Finkel T.
    (1996) Rac1 regulates a cytokine-stimulated, redox-dependent pathway necessary for NF-kappaB activation. Mol. Cell. Biol 16, 7115–7121
    OpenUrlAbstract/FREE Full Text
    1. Sweetser D. A.,
    2. Birkenmeier E. H.,
    3. Hoppe P. C.,
    4. McKeel D. W.,
    5. Gordon J. I.
    (1988) Mechanisms underlying generation of gradients in gene expression within the intestine: an analysis using transgenic mice containing fatty acid binding protein-human growth hormone fusion genes. Genes Dev 2, 1318–1332
    OpenUrlAbstract/FREE Full Text
    1. Takaishi K.,
    2. Sasaki T.,
    3. Kotani H.,
    4. Nishioka H.,
    5. Takai Y.
    (1997) Regulation of cell-cell adhesion by rac and rho small G proteins in MDCK cells. J. Cell Biol 139, 1047–1059
    OpenUrlAbstract/FREE Full Text
    1. Takano H.,
    2. Komuro I.,
    3. Oka T.,
    4. Shiojima I.,
    5. Hiroi Y.,
    6. Mizuno T.,
    7. Yazaki Y.
    (1998) The Rho family G proteins play a critical role in muscle differentiation. Mol. Cell. Biol 18, 1580–1589
    OpenUrlAbstract/FREE Full Text
    1. Troughton W. D.,
    2. Trier J. S.
    (1969) Paneth and goblet cell renewal in mouse duodenal crypts. J. Cell Biol 41, 251–268
    OpenUrlAbstract/FREE Full Text
    1. Weiser M. M.
    (1973) Intestinal epithelial cell surface membrane glycoprotein synthesis. J. Biol. Chem 248, 2536–2541
    OpenUrlAbstract/FREE Full Text
    1. Wilson C. L.,
    2. Heppner K. J.,
    3. Labosky P. A.,
    4. Hogan B. L. M.,
    5. Matrisian L. M.
    (1997) Intestinal tumorigenesis is suppressed in mice lacking the metalloproteinase matrilysin. Proc. Natl. Acad. Sci. USA 94, 1402–1407
    OpenUrlAbstract/FREE Full Text
    1. Wilson C. L.,
    2. Ouellette A. J.,
    3. Satchell D. P.,
    4. Ayabe T.,
    5. Lopez-Boado Y. S.,
    6. Stratman J. L.,
    7. Hultgren S. J.,
    8. Matrisian L. M.,
    9. Parks W. C.
    (1999) Regulation of intestinal alpha-defensin activation by the metalloproteinase matrilysin in innate host defense. Science 286, 113–117
    OpenUrlAbstract/FREE Full Text
    1. Wong M. H.,
    2. Rubinfeld B.,
    3. Gordon J. I.
    (1998) Effects of forced expression of an NH2-terminal truncated-catenin on mouse intestinal epithelial homeostasis. J. Cell Biol 141, 765–777
    OpenUrlAbstract/FREE Full Text
Previous ArticleNext Article
Back to top
Previous ArticleNext Article

This Issue

 Download PDF

Email

Thank you for your interest in spreading the word on Development.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Rac1 mutations produce aberrant epithelial differentiation in the developing and adult mouse small intestine
(Your Name) has sent you a message from Development
(Your Name) thought you would like to see the Development web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
JOURNAL ARTICLES
Rac1 mutations produce aberrant epithelial differentiation in the developing and adult mouse small intestine
T.S. Stappenbeck, J.I. Gordon
Development 2000 127: 2629-2642;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Citation Tools
JOURNAL ARTICLES
Rac1 mutations produce aberrant epithelial differentiation in the developing and adult mouse small intestine
T.S. Stappenbeck, J.I. Gordon
Development 2000 127: 2629-2642;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Alerts

Please log in to add an alert for this article.

Sign in to email alerts with your email address

Article navigation

  • Top
  • Article
  • Info & metrics
  • PDF

Related articles

Cited by...

More in this TOC section

  • Germline and developmental roles of the nuclear transport factor importin (α)3 in C. elegans
  • Monofocal origin of telencephalic oligodendrocytes in the anterior entopeduncular area of the chick embryo
  • Genetic dissection of nodal function in patterning the mouse embryo
Show more JOURNAL ARTICLES

Similar articles

Other journals from The Company of Biologists

Journal of Cell Science

Journal of Experimental Biology

Disease Models & Mechanisms

Biology Open

Advertisement

A new society for regenerative biologists

Kenneth Poss and Elly Tanaka announce the launch of the International Society for Regenerative Biology (ISRB), which will promote research and education in the field of regenerative biology.


Upcoming special issue: call for papers

The Immune System in Development and Regeneration
Guest editors: Florent Ginhoux and Paul Martin
Submission deadline: 1 September 2021
Publication: Spring 2022

The special issue welcomes Review articles as well as Research articles, and will be widely promoted online and at key global conferences.


An interview with Cagney Coomer

Over a virtual chat, we spoke to Cagney Coomer about her experiences in the lab, the classroom and the community centre, and why she thinks outreach and role models are vital to science.


Development presents...

Our successful webinar series continues into 2021, with early-career researchers presenting their papers and a chance to virtually network with the developmental biology community afterwards. Here, Michèle Romanos talks about her new preprint, which mixes experimentation in quail embryos and computational modelling to understand how heterogeneity in a tissue influences cell rate.

Save your spot at our next session:

10 March
Time: 9:00 (GMT)
Chaired by: Thomas Lecuit

Join our mailing list to receive news and updates on the series.

Articles

  • Accepted manuscripts
  • Latest complete issue
  • Issue archive
  • Archive by article type
  • Special issues
  • Subject collections
  • Sign up for alerts

About us

  • About Development
  • About the Node
  • Editors and board
  • Editor biographies
  • Travelling Fellowships
  • Grants and funding
  • Journal Meetings
  • Workshops
  • The Company of Biologists

For authors

  • Submit a manuscript
  • Aims and scope
  • Presubmission enquiries
  • Article types
  • Manuscript preparation
  • Cover suggestions
  • Editorial process
  • Promoting your paper
  • Open Access
  • Biology Open transfer

Journal info

  • Journal policies
  • Rights and permissions
  • Media policies
  • Reviewer guide
  • Sign up for alerts

Contact

  • Contact Development
  • Subscriptions
  • Advertising
  • Feedback
  • Institutional usage stats (logged-in users only)

 Twitter   YouTube   LinkedIn

© 2021   The Company of Biologists Ltd   Registered Charity 277992