Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Sign up for alerts
  • About us
    • About Development
    • About the Node
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contacts
    • Subscriptions
    • Advertising
    • Feedback
    • For library administrators
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

User menu

  • Log in
  • Log out

Search

  • Advanced search
Development
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

supporting biologistsinspiring biology

Development

  • Log in
Advanced search

RSS  Twitter  Facebook  YouTube 

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Sign up for alerts
  • About us
    • About Development
    • About the Node
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contacts
    • Subscriptions
    • Advertising
    • Feedback
    • For library administrators
JOURNAL ARTICLES
A role for the DP subunit of the E2F transcription factor in axis determination during Drosophila oogenesis
D.L. Myster, P.C. Bonnette, R.J. Duronio
Development 2000 127: 3249-3261;
D.L. Myster
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
P.C. Bonnette
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
R.J. Duronio
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & metrics
  • PDF
Loading

Summary

The E2F family of transcription factors contributes to cell cycle control by regulating the transcription of DNA replication factors. Functional ‘E2F’ is a DNA-binding heterodimer composed of E2F and DP proteins. Drosophila contains two E2F genes (dE2F, dE2F2) and one DP gene (dDP). Mutation of either dE2F or dDP eliminates G(1)-S transcription of known replication factors during embryogenesis and compromises DNA replication. However, the analysis of these mutant phenotypes is complicated by the perdurance of maternally supplied gene function. To address this and to further analyze the role of E2F transcription factors in development we have phenotypically characterized mitotic clones of dDP mutant cells in the female germline. Our analysis indicates that dDP is required for several essential processes during oogenesis. In a fraction of the mutant egg chambers the germ cells execute one extra round of mitosis, suggesting that in this tissue dDP is uniquely utilized for cell cycle arrest rather than cell cycle progression. Mutation of dDP in the germline also prevents nurse cell cytoplasm transfer to the oocyte, resulting in a ‘dumpless’ phenotype that blocks oocyte development. This phenotype likely results from both disruption of the actin cytoskeleton and a failure of nurse cell apoptosis, each of which are required for normal cytoplasmic transfer. Lastly, we found that dDP is required for the establishment of the dorsal-ventral axis, as loss of dDP function prevents the localized expression of the EGFR ligand Gurken in the oocyte, which initiates dorsal-ventral polarity in the egg chamber. Thus we have uncovered new functions for E2F transcription factors during development, including an unexpected role in pattern formation.

REFERENCES

    1. Asano M.,
    2. Wharton R. P.
    (1999) E2F mediates developmental and cell cycle regulation of ORC1 in Drosophila. EMBO J 18, 2435–2448
    OpenUrlAbstract
    1. Brook A.,
    2. Xie J. E.,
    3. Du W.,
    4. Dyson N.
    (1996) Requirements for dE2F function in proliferating cells and in post-mitotic differentiating cells. EMBO J 15, 3676–3683
    OpenUrlPubMedWeb of Science
    1. Cant K.,
    2. Knowles B. A.,
    3. Mooseker M. S.,
    4. Cooley L.
    (1994) Drosophila singed, a fascin homolog, is required for actin bundle formation during oogenesis and bristle extension. J. Cell Biol 125, 369–380
    OpenUrlAbstract/FREE Full Text
    1. Chou T. B.,
    2. Noll E.,
    3. Perrimon N.
    (1993) Autosomal P[ovoD1] dominant female-sterile insertions in Drosophila and their use in generating germ-line chimeras. Development 119, 1359–1369
    OpenUrlAbstract
    1. Chou T. B.,
    2. Perrimon N.
    (1996) The autosomal FLP-DFS technique for generating germline mosaics in Drosophila melanogaster. Genetics 144, 1673–1679
    OpenUrlAbstract/FREE Full Text
    1. Cooley L.,
    2. Verheyen E.,
    3. Ayers K.
    (1992) chickadee encodes a profilin required for intercellular cytoplasm transport during Drosophila oogenesis. Cell 69, 173–184
    OpenUrlCrossRefPubMedWeb of Science
    1. DeGregori J.,
    2. Leone G.,
    3. Miron A.,
    4. Jakoi L.,
    5. Nevins J. R.
    (1997) Distinct roles for E2F proteins in cell growth control and apoptosis. Proc. Natl. Acad. Sci. USA 94, 7245–7250
    OpenUrlAbstract/FREE Full Text
    1. Du W.
    (1999) Suppression of the rbf null mutants by a de2f1 allele that lacks transactivation domain. Development 127, 367–379
    OpenUrlAbstract
    1. Du W.,
    2. Dyson N.
    (1999) The role of RBF in the introduction of G1regulation during Drosophila embryogenesis. EMBO J 18, 916–925
    OpenUrlCrossRefPubMedWeb of Science
    1. Du W.,
    2. Vidal M.,
    3. Xie J. E.,
    4. Dyson N.
    (1996) RBF, a novel RB-related gene that regulates E2F activity and interacts with cyclin E in Drosophila. Genes Dev 10, 1206–1218
    OpenUrlAbstract/FREE Full Text
    1. Duronio R. J.,
    2. Bonnette P. C.,
    3. O'Farrell P. H.
    (1998) Mutations of the Drosophila dDP, dE2F, and cyclin E genes reveal distinct roles for theE2F-DP transcription factor and cyclin E during the G1-S transition. Mol. Cell. Biol 18, 141–151
    OpenUrlAbstract/FREE Full Text
    1. Duronio R. J.,
    2. O'Farrell P. H.
    (1994) Developmental control of a G1-S transcriptional program in Drosophila. Development 120, 1503–1515
    OpenUrlAbstract
    1. Duronio R. J.,
    2. O'Farrell P. H.
    (1995) Developmental control of the G1to S transition in Drosophila: cyclin E is a limiting downstream target of E2F. Genes Dev 9, 1456–1468
    OpenUrlAbstract/FREE Full Text
    1. Duronio R. J.,
    2. O'Farrell P. H.,
    3. Xie J. E.,
    4. Brook A.,
    5. Dyson N.
    (1995) The transcription factor E2F is required for S phase during Drosophila embryogenesis. Genes Dev 9, 1445–1455
    OpenUrlAbstract/FREE Full Text
    1. Dynlacht B. D.,
    2. Brook A.,
    3. Dembski M.,
    4. Yenush L.,
    5. Dyson N.
    (1994) DNA-binding and trans-activation properties of Drosophila E2F and DP proteins. Proc. Natl. Acad. Sci. USA 91, 6359–6363
    OpenUrlAbstract/FREE Full Text
    1. Dyson N.
    (1998) The regulation of E2F by pRB-family proteins. Genes Dev 12, 2245–2262
    OpenUrlFREE Full Text
    1. Ephrussi A.,
    2. Dickinson L. K.,
    3. Lehmann R.
    (1991) Oskar organizes the germ plasm and directs localization of the posterior determinant nanos. Cell 66, 37–50
    OpenUrlCrossRefPubMedWeb of Science
    1. Field S. J.,
    2. Tsai F. Y.,
    3. Kuo F.,
    4. Zubiaga A. M.,
    5. Kaelin W. G., Jr.,
    6. Livingston D. M.,
    7. Orkin S. H.,
    8. Greenberg M. E.
    (1996) E2F-1 functions in mice to promote apoptosis and suppress proliferation. Cell 85, 549–561
    OpenUrlCrossRefPubMedWeb of Science
    1. Foley K.,
    2. Cooley L.
    (1998) Apoptosis in late-stage Drosophila nurse cells does not require genes within the H99 deficiency. Development 125, 1075–1082
    OpenUrlAbstract
    1. Ghabrial A.,
    2. Ray R. P.,
    3. Schupbach T.
    (1998) okra and spindle-B encode components of the RAD52 DNA repair pathway and affect meiosis and patterning in Drosophila oogenesis. Genes Dev 12, 2711–2723
    OpenUrlAbstract/FREE Full Text
    1. Giorgi F.,
    2. Deri P.
    (1976) Cell death in ovarian chambers of Drosophila melanogaster. J. Embryol. Exp. Morph 35, 521–533
    OpenUrlPubMedWeb of Science
    1. Gonzalez-Reyes A.,
    2. Elliott H.,
    3. St Johnston D.
    (1995) Polarization of both major body axes in Drosophila by gurken-torpedo signalling. Nature 375, 654–658
    OpenUrlCrossRefPubMedWeb of Science
    1. Gonzalez-Reyes A.,
    2. Elliott H.,
    3. St Johnston D.
    (1997) Oocyte determination and the origin of polarity in Drosophila: the role of the spindle genes. Development 124, 4927–4937
    OpenUrlAbstract
    1. Gutzeit H. O.
    (1986) The role of microfilaments in cytoplasmic streaming in Drosophila follicles. J. Cell Sci 80, 159–169
    OpenUrlAbstract/FREE Full Text
    1. Hao X. F.,
    2. Alphey L.,
    3. Bandara L. R.,
    4. Lam E. W.,
    5. Glover D.,
    6. La Thangue N. B.
    (1995) Functional conservation of the cell cycle-regulating transcription factor DRTF1/E2F and its pathway of control in Drosophila melanogaster. J. Cell Sci 108, 2945–2954
    OpenUrlAbstract/FREE Full Text
    1. Harbour J. W.,
    2. Luo R. X.,
    3. Dei Santi A.,
    4. Postigo A. A.,
    5. Dean D. C.
    (1999) Cdk phosphorylation triggers sequential intramolecular interactions that progressively block Rb functions as cells move through G1. Cell 98, 859–869
    OpenUrlCrossRefPubMedWeb of Science
    1. Hawkins N. C.,
    2. Thorpe J.,
    3. Schupbach T.
    (1996) Encore, a gene required for the regulation of germ line mitosis and oocyte differentiation during Drosophila oogenesis. Development 122, 281–290
    OpenUrlAbstract
    1. Hawkins N. C.,
    2. Van Buskirk C.,
    3. Grossniklaus U.,
    4. Schupbach T.
    (1997) Post-transcriptional regulation of gurken by encore is required for axis determination in Drosophila. Development 124, 4801–4810
    OpenUrlAbstract
    1. Humbert P. O.,
    2. Verona R.,
    3. Trimarchi J. M.,
    4. Rogers C.,
    5. Dandapani S.,
    6. Lees J. A.
    (2000) E2f3 is critical for normal cellular proliferation. Genes Dev 14, 690–703
    OpenUrlAbstract/FREE Full Text
    1. Jordan P.,
    2. Karess R.
    (1997) Myosin light chain-activating phosphorylation sites are required for oogenesis in Drosophila. J. Cell Biol 139, 1805–1819
    OpenUrlAbstract/FREE Full Text
    1. Kim-Ha J.,
    2. Smith J. L.,
    3. Macdonald P. M.
    (1991) oskar mRNA is localized to the posterior pole of the Drosophila oocyte. Cell 66, 23–35
    OpenUrlCrossRefPubMedWeb of Science
    1. Lasko P. F.,
    2. Pardue M. L.
    (1988) Studies of the genetic organization of the vestigial microregion of Drosophila melanogaster. Genetics 120, 495–502
    OpenUrlAbstract/FREE Full Text
    1. Lilly M. A.,
    2. Spradling A. C.
    (1996) The Drosophila endocycle is controlled by Cyclin E and lacks a checkpoint ensuring S-phase completion. Genes Dev 10, 2514–2526
    OpenUrlAbstract/FREE Full Text
    1. Lindeman G. J.,
    2. Dagnino L.,
    3. Gaubatz S.,
    4. Xu Y.,
    5. Bronson R. T.,
    6. Warren H. B.,
    7. Livingston D. M.
    (1998) A specific, nonproliferative role for E2F-5 in choroid plexus function revealed by gene targeting. Genes Dev 12, 1092–1098
    OpenUrlAbstract/FREE Full Text
    1. Mahajan-Miklos S.,
    2. Cooley L.
    (1994) The villin-like protein encoded by the Drosophila quail gene is required for actin bundle assembly during oogenesis. Cell 78, 291–301
    OpenUrlCrossRefPubMedWeb of Science
    1. Manseau L.,
    2. Calley J.,
    3. Phan H.
    (1996) Profilin is required for posterior patterning of the Drosophila oocyte. Development 122, 2109–2116
    OpenUrlAbstract
    1. Matova N.,
    2. Mahajan-Miklos S.,
    3. Mooseker M. S.,
    4. Cooley L.
    (1999) Drosophila Quail, a villin-related protein, bundles actin filaments in apoptotic nurse cells. Development 126, 5645–5657
    OpenUrlAbstract
    1. McCaffrey J.,
    2. Yamasaki L.,
    3. Dyson N. J.,
    4. Harlow E.,
    5. Griep A. E.
    (1999) Disruption of retinoblastoma protein family function by human papillomavirus type 16 E7 oncoprotein inhibits lens development in part through E2F-1. Mol. Cell. Biol 19, 6458–6468
    OpenUrlAbstract/FREE Full Text
    1. McCall K.,
    2. Steller H.
    (1998) Requirement for DCP-1 caspase during Drosophila oogenesis. Science 279, 230–234
    OpenUrlAbstract/FREE Full Text
    1. Neufeld T. P.,
    2. de la Cruz A. F.,
    3. Johnston L. A.,
    4. Edgar B. A.
    (1998) Coordination of growth and cell division in the Drosophila wing. Cell 93, 1183–1193
    OpenUrlCrossRefPubMedWeb of Science
    1. Neuman-Silberberg F. S.,
    2. Schupbach T.
    (1993) The Drosophila dorsoventral patterning gene gurken produces a dorsally localized RNA and encodes a TGF alpha-like protein. Cell 75, 165–174
    OpenUrlCrossRefPubMedWeb of Science
    1. Neuman-Silberberg F. S.,
    2. Schupbach T.
    (1996) The Drosophila TGF-alpha-like protein Gurken: expression and cellular localization during Drosophila oogenesis. Mech. Dev 59, 105–113
    OpenUrlCrossRefPubMedWeb of Science
    1. Ohtani K.,
    2. Nevins J. R.
    (1994) Functional properties of a Drosophila homolog of the E2F1 gene. Mol. Cell. Biol 14, 1603–1612
    OpenUrlAbstract/FREE Full Text
    1. Okada E.,
    2. Waddington C. H.
    (1959) The submicroscopic structure of the Drosophila egg. J. Embryol. Exp. Morph 7, 583–597
    1. Pan H.,
    2. Yin C.,
    3. Dyson N. J.,
    4. Harlow E.,
    5. Yamasaki L.,
    6. Van Dyke T.
    (1998) Key roles for E2F1 in signaling p53-dependent apoptosis and in cell division within developing tumors. Mol. Cell 2, 283–292
    1. Persengiev S. P.,
    2. Kondova, II,
    3. Kilpatrick D. L.
    (1999) E2F4 actively promotes the initiation and maintenance of nerve growth factor-induced cell differentiation. Mol. Cell. Biol 19, 6048–6056
    OpenUrlAbstract/FREE Full Text
    1. Ray R. P.,
    2. Schupbach T.
    (1996) Intercellular signaling and the polarization of body axes during Drosophila oogenesis. Genes Dev 10, 1711–1723
    OpenUrlFREE Full Text
    1. Rittenhouse K. R.,
    2. Berg C. A.
    (1995) Mutations in the Drosophila gene bullwinkle cause the formation of abnormal eggshell structures and bicaudal embryos. Development 121, 3023–3033
    OpenUrlAbstract
    1. Robinson D. N.,
    2. Cooley L.
    (1997) Drosophila kelch is an oligomeric ring canal actin organizer. J. Cell Biol 138, 799–810
    OpenUrlAbstract/FREE Full Text
    1. Robinson D. N.,
    2. Cooley L.
    (1997) Genetic analysis of the actin cytoskeleton in the Drosophila ovary. Annu. Rev. Cell. Dev. Biol 13, 147–170
    OpenUrlCrossRefPubMed
    1. Robinson D. N.,
    2. Smith-Leiker T. A.,
    3. Sokol N. S.,
    4. Hudson A. M.,
    5. Cooley L.
    (1997) Formation of the Drosophila ovarian ring canal inner rim depends on cheerio. Genetics 145, 1063–1072
    OpenUrlAbstract/FREE Full Text
    1. Roth S.,
    2. Neuman-Silberberg F. S.,
    3. Barcelo G.,
    4. Schupbach T.
    (1995) cornichon and the EGF receptor signaling process are necessary for both anterior-posterior and dorsal-ventral pattern formation in Drosophila. Cell 81, 967–978
    OpenUrlCrossRefPubMedWeb of Science
    1. Royzman I.,
    2. Austin R. J.,
    3. Bosco G.,
    4. Bell S. P.,
    5. Orr-Weaver T. L.
    (1999) ORC localization in Drosophila follicle cells and the effects of mutations in dE2F and dDP. Genes Dev 13, 827–840
    OpenUrlAbstract/FREE Full Text
    1. Royzman I.,
    2. Whittaker A. J.,
    3. Orr-Weaver T. L.
    (1997) Mutations in Drosophila DP and E2F distinguish G1-S progression from an associated transcriptional program. Genes Dev 11, 1999–2011
    OpenUrlAbstract/FREE Full Text
    1. Sawado T.,
    2. Yamaguchi M.,
    3. Nishimoto Y.,
    4. Ohno K.,
    5. Sakaguchi K.,
    6. Matsukage A.
    (1998) dE2F2, a novel E2F-family transcription factor in Drosophila melanogaster. Biochem. Biophys. Res. Commun 251, 409–415
    OpenUrlCrossRefPubMedWeb of Science
    1. Schupbach T.
    (1987) Germ line and soma cooperate during oogenesis to establish the dorsoventral pattern of egg shell and embryo in Drosophila melanogaster. Cell 49, 699–707
    OpenUrlCrossRefPubMedWeb of Science
    1. Schupbach T.,
    2. Wieschaus E.
    (1991) Female sterile mutations on the second chromosome of Drosophila melanogaster. II. Mutations blocking oogenesis or altering egg morphology. Genetics 129, 1119–1136
    OpenUrlAbstract/FREE Full Text
    1. Song Z.,
    2. McCall K.,
    3. Steller H.
    (1997) DCP-1, a Drosophila cell death protease essential for development. Science 275, 536–540
    OpenUrlAbstract/FREE Full Text
    1. Styhler S.,
    2. Nakamura A.,
    3. Swan A.,
    4. Suter B.,
    5. Lasko P.
    (1998) vasa is required for GURKEN accumulation in the oocyte, and is involved in oocyte differentiation and germline cyst development. Development 125, 1569–1578
    OpenUrlAbstract
    1. Suzanne M.,
    2. Irie K.,
    3. Glise B.,
    4. Agnes F.,
    5. Mori E.,
    6. Matsumoto K.,
    7. Noselli S.
    (1999) The Drosophila p38 MAPK pathway is required during oogenesis for egg asymmetric development. Genes Dev 13, 1464–1474
    OpenUrlAbstract/FREE Full Text
    1. Suzuki E.,
    2. Hemmati-Brivanlou A.
    (2000) Xenopus embryonic E2F is required for the formation of ventral and posterior cell fates during early embryogensis. Mol. Cell 5, 217–229
    OpenUrl
    1. Tautz D.,
    2. Pfeifle C.
    (1989) A non-radioactive in situ hybridization method for the localization of specific RNAs in Drosophila embryos reveals translational control of the segmentation gene hunchback. Chromosoma 98, 81–85
    OpenUrlCrossRefPubMedWeb of Science
    1. Tinker R.,
    2. Silver D.,
    3. Montell D. J.
    (1998) Requirement for the vasa RNA helicase in gurken mRNA localization. Dev. Biol 199, 1–10
    OpenUrlCrossRefPubMed
    1. Tomancak P.,
    2. Guichet A.,
    3. Zavorszky P.,
    4. Ephrussi A.
    (1998) Oocyte polarity depends on regulation of gurken by Vasa. Development 125, 1723–1732
    OpenUrlAbstract
    1. Tsai K. Y.,
    2. Hu Y.,
    3. Macleod K. F.,
    4. Crowley D.,
    5. Yamasaki L.,
    6. Jacks T.
    (1998) Mutation of E2f-1 suppresses apoptosis and inappropriate S phase entry and extends survival of Rb-deficient mouse embryos. Mol. Cell 2, 293–304
    OpenUrlCrossRef
    1. Vigo E.,
    2. Muller H.,
    3. Prosperini E.,
    4. Hateboer G.,
    5. Cartwright P.,
    6. Moroni M. C.,
    7. Helin K.
    (1999) CDC25A phosphatase is a target of E2F and is required for efficient E2F-induced S phase. Mol. Cell. Biol 19, 6379–6395
    OpenUrlAbstract/FREE Full Text
    1. Wang S.,
    2. Nath N.,
    3. Minden A.,
    4. Chellappan S.
    (1999) Regulation of Rb and E2F by signal transduction cascades: divergent effects of JNK1 and p38 kinases. EMBO J 18, 1559–1570
    OpenUrlAbstract
    1. Wilson J. E.,
    2. Connell J. E.,
    3. Macdonald P. M.
    (1996) aubergine enhances oskar translation in the Drosophila ovary. Development 122, 1631–1639
    OpenUrlAbstract
    1. Xue F.,
    2. Cooley L.
    (1993) kelch encodes a component of intercellular bridges in Drosophila egg chambers. Cell 72, 681–693
    OpenUrlCrossRefPubMedWeb of Science
    1. Yamaguchi M.,
    2. Hayashi Y.,
    3. Hirose F.,
    4. Nishimoto Y.,
    5. Matsukage A.
    (1997) Distinct roles of E2F recognition sites as positive or negative elements in regulation of the DNA polymerase alpha 180 kDa catalytic subunit gene promoter during Drosophila development. Nucleic Acids Res 25, 3847–3854
    OpenUrlAbstract/FREE Full Text
    1. Yamaguchi M.,
    2. Hayashi Y.,
    3. Matsukage A.
    (1995) Essential role of E2F recognition sites in regulation of the proliferating cell nuclear antigen gene promoter during Drosophila development. J. Biol. Chem 270, 25159–25165
    OpenUrlAbstract/FREE Full Text
    1. Yamasaki L.
    (1999) Balancing proliferation and apoptosis in vivo: the Goldilocks theory of E2F/DP action. Biochim. Biophys. Acta 1423, 9–15
    OpenUrlCrossRef
    1. Yamasaki L.,
    2. Bronson R.,
    3. Williams B. O.,
    4. Dyson N. J.,
    5. Harlow E.,
    6. Jacks T.
    (1998) Loss of E2F-1 reduces tumorigenesis and extends the lifespan of Rb1(+/)mice. Nature Genet 18, 360–364
    OpenUrlCrossRefPubMedWeb of Science
    1. Yamasaki L.,
    2. Jacks T.,
    3. Bronson R.,
    4. Goillot E.,
    5. Harlow E.,
    6. Dyson N. J.
    (1996) Tumor induction and tissue atrophy in mice lacking E2F-1. Cell 85, 537–548
    OpenUrlCrossRefPubMedWeb of Science
    1. Zheng N.,
    2. Fraenkel E.,
    3. Pabo C. O.,
    4. Pavletich N. P.
    (1999) Structural basis of DNA recognition by the heterodimeric cell cycle transcription factor E2F-DP. Genes Dev 13, 666–674
    OpenUrlAbstract/FREE Full Text
Previous ArticleNext Article
Back to top
Previous ArticleNext Article

This Issue

 Download PDF

Email

Thank you for your interest in spreading the word on Development.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
A role for the DP subunit of the E2F transcription factor in axis determination during Drosophila oogenesis
(Your Name) has sent you a message from Development
(Your Name) thought you would like to see the Development web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
JOURNAL ARTICLES
A role for the DP subunit of the E2F transcription factor in axis determination during Drosophila oogenesis
D.L. Myster, P.C. Bonnette, R.J. Duronio
Development 2000 127: 3249-3261;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Citation Tools
JOURNAL ARTICLES
A role for the DP subunit of the E2F transcription factor in axis determination during Drosophila oogenesis
D.L. Myster, P.C. Bonnette, R.J. Duronio
Development 2000 127: 3249-3261;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Alerts

Please log in to add an alert for this article.

Sign in to email alerts with your email address

Article navigation

  • Top
  • Article
  • Info & metrics
  • PDF

Related articles

Cited by...

More in this TOC section

  • Groucho augments the repression of multiple Even skipped target genes in establishing parasegment boundaries
  • Axial skeletal patterning in mice lacking all paralogous group 8 Hox genes
  • Morphogenetic cell movements in the middle region of the dermomyotome dorsomedial lip associated with patterning and growth of the primary epaxial myotome
Show more JOURNAL ARTICLES

Similar articles

Other journals from The Company of Biologists

Journal of Cell Science

Journal of Experimental Biology

Disease Models & Mechanisms

Biology Open

Advertisement

A new society for regenerative biologists

Kenneth Poss and Elly Tanaka announce the launch of the International Society for Regenerative Biology (ISRB), which will promote research and education in the field of regenerative biology.


Upcoming special issue: call for papers

The Immune System in Development and Regeneration
Guest editors: Florent Ginhoux and Paul Martin
Submission deadline: 1 September 2021
Publication: Spring 2022

The special issue welcomes Review articles as well as Research articles, and will be widely promoted online and at key global conferences.


An interview with Cagney Coomer

Over a virtual chat, we spoke to Cagney Coomer about her experiences in the lab, the classroom and the community centre, and why she thinks outreach and role models are vital to science.


Development presents...

Our successful webinar series continues into 2021, with early-career researchers presenting their papers and a chance to virtually network with the developmental biology community afterwards. Here, Michèle Romanos talks about her new preprint, which mixes experimentation in quail embryos and computational modelling to understand how heterogeneity in a tissue influences cell rate.

Save your spot at our next session:

10 March
Time: 9:00 (GMT)
Chaired by: Thomas Lecuit

Join our mailing list to receive news and updates on the series.

Articles

  • Accepted manuscripts
  • Issue in progress
  • Latest complete issue
  • Issue archive
  • Archive by article type
  • Special issues
  • Subject collections
  • Sign up for alerts

About us

  • About Development
  • About the Node
  • Editors and board
  • Editor biographies
  • Travelling Fellowships
  • Grants and funding
  • Journal Meetings
  • Workshops
  • The Company of Biologists

For authors

  • Submit a manuscript
  • Aims and scope
  • Presubmission enquiries
  • Article types
  • Manuscript preparation
  • Cover suggestions
  • Editorial process
  • Promoting your paper
  • Open Access
  • Biology Open transfer

Journal info

  • Journal policies
  • Rights and permissions
  • Media policies
  • Reviewer guide
  • Sign up for alerts

Contact

  • Contact Development
  • Subscriptions
  • Advertising
  • Feedback
  • Institutional usage stats (logged-in users only)

 Twitter   YouTube   LinkedIn

© 2021   The Company of Biologists Ltd   Registered Charity 277992