Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Accepted manuscripts
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Sign up for alerts
  • About us
    • About Development
    • About the Node
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contacts
    • Subscriptions
    • Advertising
    • Feedback
    • For library administrators
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

User menu

  • Log in
  • Log out

Search

  • Advanced search
Development
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

supporting biologistsinspiring biology

Development

  • Log in
Advanced search

RSS  Twitter  Facebook  YouTube 

  • Home
  • Articles
    • Accepted manuscripts
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Sign up for alerts
  • About us
    • About Development
    • About the Node
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contacts
    • Subscriptions
    • Advertising
    • Feedback
    • For library administrators
JOURNAL ARTICLES
Targeting of the EphA4 tyrosine kinase receptor affects dorsal/ventral pathfinding of limb motor axons
F. Helmbacher, S. Schneider-Maunoury, P. Topilko, L. Tiret, P. Charnay
Development 2000 127: 3313-3324;
F. Helmbacher
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
S. Schneider-Maunoury
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
P. Topilko
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
L. Tiret
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
P. Charnay
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & metrics
  • PDF
Loading

Summary

The Eph family of tyrosine kinase receptors has recently been implicated in various processes involving the detection of environmental cues such as axonal guidance, targeted cell migration and boundary formation. We have inactivated the mouse EphA4 gene to investigate its functions during development. Homozygous EphA4 mutant animals show peroneal muscular atrophy correlating with the absence of the peroneal nerve, the main dorsal nerve of the hindlimb. This phenotype is also observed, although with a lower penetrance, in heterozygotes. During normal hindlimb innervation, motor axons converge towards the sciatic plexus region at the base of the limb bud, where they must choose between dorsal and ventral trajectories within the limb. Among the axons emerging from the sciatic plexus, dorsal projections show higher levels of EphA4 protein than ventral axons. In EphA4 mutant mice, presumptive dorsal motor axons fail to enter the dorsal compartment of the limb and join the ventral nerve. Our data therefore suggest that the level of EphA4 protein in growing limb motor axons is involved in the selection of dorsal versus ventral trajectories, thus contributing to the topographic organisation of motor projections.

REFERENCES

    1. Adams R. H.,
    2. Wilkinson G. A.,
    3. Weiss C.,
    4. Diella F.,
    5. Gale N. W.,
    6. Deutsch U.,
    7. Risau W.,
    8. Klein R.
    (1999) Roles of ephrinB ligands and EphB receptors in cardiovascular development: demarcation of arterial/venous domains, vascular morphogenesis, and sprouting angiogenesis. Genes Dev 13, 295–306
    OpenUrlAbstract/FREE Full Text
    1. Araujo M.,
    2. Piedra M. E.,
    3. Herrera M. T.,
    4. Ros M. A.,
    5. Nieto M. A.
    (1998) The expression and regulation of chick EphA7 suggests roles in limb patterning and innervation. Development 125, 4195–204
    OpenUrlAbstract
    1. Becker N.,
    2. Gilardi-Hebenstreit P.,
    3. Seitanidou T.,
    4. Wilkinson D.,
    5. Charnay P.
    (1995) Characterisation of the Sek-1 receptor tyrosine kinase. Febs Lett 368, 353–7
    OpenUrlCrossRefPubMedWeb of Science
    1. Bergemann A. D.,
    2. Zhang L.,
    3. Chiang M. K.,
    4. Brambilla R.,
    5. Klein R.,
    6. Flanagan J. G.
    (1998) Ephrin-B3, a ligand for the receptor EphB3, expressed at the midline of the developing neural tube. Oncogene 16, 471–480
    OpenUrlCrossRefPubMedWeb of Science
    1. Camus A.,
    2. Kress C.,
    3. Babinet C.,
    4. Barra J.
    (1996) Unexpected behavior of a gene trap vector comprising a fusion between the Sh ble and the lacZ genes. Mol. Reprod. Dev 45, 255–63
    OpenUrlCrossRefPubMedWeb of Science
    1. Dederen P. J.,
    2. Gribnau A. A.,
    3. Curfs M. H.
    (1994) Retrograde neuronal tracing with cholera toxin B subunit: comparison of three different visualization methods. Histochem. J 26, 856–62
    OpenUrlCrossRefPubMedWeb of Science
    1. Dottori M.,
    2. Hartley L.,
    3. Galea M.,
    4. Paxinos G.,
    5. Polizzotto M.,
    6. Kilpatrick T.,
    7. Bartlett P. F.,
    8. Murphy M.,
    9. Kontgen F.,
    10. Boyd A. W.
    (1998) EphA4 (Sek1) receptor tyrosine kinase is required for the development of the corticospinal tract. Proc. Natl Acad. Sci. USA 95, 13248–13253
    OpenUrlAbstract/FREE Full Text
    1. Drescher U.
    (1997) The Eph family in the patterning of neural development. Curr. Biol 7, 799–807
    1. Ensini M.,
    2. Tsuchida T. N.,
    3. Belting H. G.,
    4. Jessell T. M.
    (1998) The control of rostrocaudal pattern in the developing spinal cord: specification of motor neuron subtype identity is initiated by signals from paraxial mesoderm. Development 125, 969–82
    OpenUrlAbstract
    1. Feldbrin Z.,
    2. Gilai A. N.,
    3. Ezra E.,
    4. Khermosh O.,
    5. Kramer U.,
    6. Wientroub S.
    (1995) Muscle imbalance in the aetiology of idiopathic club foot. An electromyographic study. J. Bone Joint Surg. Br 77, 596–601
    1. Ferns M. J.,
    2. Hollyday M.
    (1993) Motor innervation of dorsoventrally reversed wings in chick/quail chimeric embryos. J. Neurosci 13, 2463–76
    OpenUrlAbstract
    1. Frisen J.,
    2. Barbacid M.
    (1997) Genetic analysis of the role of Eph receptors in the development of the mammalian nervous system. Cell Tissue Res 290, 209–15
    OpenUrlCrossRefPubMedWeb of Science
    1. Frisen J.,
    2. Yates P. A.,
    3. McLaughlin T.,
    4. Friedman G. C.,
    5. O'Leary D. D.,
    6. Barbacid M.
    (1998) Ephrin-A5 (AL-1/RAGS) is essential for proper retinal axon guidance and topographic mapping in the mammalian visual system. Neuron 20, 235–43
    OpenUrlCrossRefPubMedWeb of Science
    1. Fujii T.,
    2. Pichel J. G.,
    3. Taira M.,
    4. Toyama R.,
    5. Dawid I. B.,
    6. Westphal H.
    (1994) Expression patterns of the murine LIM class homeobox gene lim1 in the developing brain and excretory system. Dev. Dyn 199, 73–83
    OpenUrlPubMedWeb of Science
    1. Fukushima M.,
    2. Nakamura M.,
    3. Ohta K.,
    4. Okamura R.,
    5. Negi A.
    (1996) Regional specification of motoneurons along the anterior-posterior axis is independent of the notochord. Development 122, 905–14
    OpenUrlAbstract
    1. Gale N. W.,
    2. Holland S. J.,
    3. Valenzuela D. M.,
    4. Flenniken A.,
    5. Pan L.,
    6. Ryan T. E.,
    7. Henkemeyer M.,
    8. Strebhardt K.,
    9. Hirai H.,
    10. Wilkinson D. G.,
    11. Pawson T.,
    12. Davis S.,
    13. Yancopoulos G. D.
    (1996) Eph receptors and ligands comprise two major specificity subclasses and are reciprocally com-partmentalized during embryogenesis. Neuron 17, 9–19
    OpenUrlCrossRefPubMedWeb of Science
    1. Gilardi-Hebenstreit P.,
    2. Nieto M. A.,
    3. Frain M.,
    4. Mattei M. G.,
    5. Chestier A.,
    6. Wilkinson D. G.,
    7. Charnay P.
    (1992) An Eph-related receptor proteintyrosine kinase gene segmentally expressed in the developing mouse hindbrain. Oncogene 7, 2499–506
    OpenUrlPubMedWeb of Science
    1. Handelsman J. E.,
    2. Badalamente M. A.
    (1981) Neuromuscular studies in clubfoot. J. Pediatr. Orthop 1, 23–32
    OpenUrlPubMedWeb of Science
    1. Hornberger M. R.,
    2. Dutting D.,
    3. Ciossek T.,
    4. Yamada T.,
    5. Handwerker C.,
    6. Lang S.,
    7. Weth F.,
    8. Huf J.,
    9. Wessel R.,
    10. Logan C.,
    11. Tanaka H.,
    12. Drescher U.
    (1999) Modulation of EphA receptor function by coexpressed ephrinA ligands on retinal ganglion cell axons. Neuron 22, 731–42
    OpenUrlCrossRefPubMedWeb of Science
    1. Irving C.,
    2. Nieto M. A.,
    3. DasGupta R.,
    4. Charnay P.,
    5. Wilkinson D. G.
    (1996) Progressive spatial restriction of Sek-1 and Krox-20 gene expression during hindbrain segmentation. Dev. Biol 173, 26–38
    OpenUrlCrossRefPubMedWeb of Science
    1. Laing N. G.
    (1984) Motor innervation of proximally rotated chick embryo wings. J. Embryol. Exp. Morph 83, 213–23
    OpenUrlPubMed
    1. Lance-Jones C.
    (1982) Motoneuron cell death in the developing lumbar spinal cord of the mouse. Brain Res 256, 473–9
    OpenUrlCrossRefPubMed
    1. Lance-Jones C.,
    2. Landmesser L.
    (1980) Motoneurone projection patterns in the chick hind limb following early partial reversals of the spinal cord. J. Physiol 302, 581–602
    OpenUrl
    1. Lance-Jones C.,
    2. Landmesser L.
    (1981) Pathway selection by embryonic chick motoneurons in an experimentally altered environment. Proc. R. Soc. Lond. B Biol. Sci 214, 19–52
    OpenUrlPubMed
    1. Landmesser L.
    (1978) The distribution of motoneurones supplying chick hind limb muscles. J. Physiol 284, 371–89
    OpenUrl
    1. Magal E.,
    2. Holash J. A.,
    3. Toso R. J.,
    4. Chang D.,
    5. Lindberg R. A.,
    6. Pasquale E. B.
    (1996) B61, a ligand for the Eck receptor protein-tyrosine kinase, exhibits neurotrophic activity in cultures of rat spinal cord neurons. J. Neurosci Res 43, 735–744
    OpenUrlCrossRefPubMedWeb of Science
    1. Maina F.,
    2. Hilton M. C.,
    3. Ponzetto C.,
    4. Davies A. M.,
    5. Klein R.
    (1997) Met receptor signaling is required for sensory nerve development and HGF promotes axonal growth and survival of sensory neurons. Genes Dev 11, 3341–50
    OpenUrlAbstract/FREE Full Text
    1. Martone M. E.,
    2. Holash J. A.,
    3. Bayardo A.,
    4. Pasquale E. B.,
    5. Ellisman M. H.
    (1997) Immunolocalization of the receptor tyrosine kinase EphA4 in the adult rat central nervous system. Brain Res 771, 238–50
    OpenUrlCrossRefPubMedWeb of Science
    1. Matise M. P.,
    2. Lance-Jones C.
    (1996) A critical period for the specification of motor pools in the chick lumbosacral spinal cord. Development 122, 659–669
    OpenUrlAbstract
    1. McHanwell S.,
    2. Biscoe T. J.
    (1981) The localization of motoneurons supplying the hindlimb muscles of the mouse. Philos. Trans R. Soc. Lond. B Biol. Sci 293, 477–508
    OpenUrlPubMedWeb of Science
    1. Mellitzer G.,
    2. Xu Q.,
    3. Wilkinson D. G.
    (1999) Eph receptors and ephrins restrict cell intermingling and communication. Nature 400, 77–81
    OpenUrlCrossRefPubMedWeb of Science
    1. Mori T.,
    2. Wanaka A.,
    3. Taguchi A.,
    4. Matsumoto K.,
    5. Tohyama M.
    (1995) Differential expressions of the eph family of receptor tyrosine kinase genes (sek, elk, eck) in the developing nervous system of the mouse. Brain Res. Mol. Brain Res 29, 325–35
    OpenUrlPubMed
    1. Morris D. G.
    (1978) Development of functional motor innervation in supernumerary hindlimbs of the chick embryo. J. Neurophysiol 41, 1450–65
    OpenUrlAbstract/FREE Full Text
    1. Nieto M. A.,
    2. Gilardi-Hebenstreit P.,
    3. Charnay P.,
    4. Wilkinson D. G.
    (1992) A receptor protein tyrosine kinase implicated in the segmental patterning of the hindbrain and mesoderm. Development 116, 1137–50
    OpenUrlAbstract/FREE Full Text
    1. Nonaka I.,
    2. Kikuchi A.,
    3. Suzuki T.,
    4. Esaki K.
    (1986) , Hereditary peroneal muscular atrophy in the mouse: an experimental mode for congenital contractures (arthrogryposis). Exp. Neurol 91, 571–579
    OpenUrlCrossRefPubMed
    1. O'Leary D. D.,
    2. Wilkinson D. G.
    (1999) Eph receptors and ephrins in neural development. Curr. Opin. Neurobiol 9, 65–73
    OpenUrlCrossRefPubMedWeb of Science
    1. Ohta K.,
    2. Nakamura M.,
    3. Hirokawa K.,
    4. Tanaka S.,
    5. Iwama A.,
    6. Suda T.,
    7. Ando M.,
    8. Tanaka H.
    (1996) The receptor tyrosine kinase, Cek8, is transiently expressed on subtypes of motoneurons in the spinal cord during development. Mech. Dev 54, 59–69
    OpenUrlCrossRefPubMedWeb of Science
    1. Ohta K.,
    2. Iwamasa H.,
    3. Drescher U.,
    4. Terasaki H.,
    5. Tanaka H.
    (1997) The inhibitory effect on neurite outgrowth of motoneurons exerted by the ligands ELF-1 and RAGS. Mech. Dev 64, 127–35
    OpenUrlCrossRefPubMedWeb of Science
    1. Orioli D.,
    2. Henkemeyer M.,
    3. Lemke G.,
    4. Klein R.,
    5. Pawson T.
    (1996) Sek4 and Nuk receptors cooperate in guidance of commissural axons and in palate formation. EMBO J 15, 6035–49
    OpenUrlPubMedWeb of Science
    1. Park S.,
    2. Frisen J.,
    3. Barbacid M.
    (1997) Aberrant axonal projections in mice lacking EphA8 (Eek) tyrosine protein kinase receptors. EMBO J 16, 3106–14
    OpenUrlCrossRefPubMedWeb of Science
    1. Pfaff S.,
    2. Kintner C.
    (1998) Neuronal diversification: development of motor neuron subtypes. Curr. Opin. Neurobiol 8, 27–36
    OpenUrlCrossRefPubMedWeb of Science
    1. Prince V.,
    2. Lumsden A.
    (1994) Hoxa-2 expression in normal and transposed rhombomeres: independent regulation in the neural tube and neural crest. Development 120, 911–23
    OpenUrlAbstract
    1. Schneider-Maunoury S.,
    2. Topilko P.,
    3. Seitandou T.,
    4. Levi G.,
    5. Cohen-Tannoudji M.,
    6. Pournin S.,
    7. Babinet C.,
    8. Charnay P.
    (1993) Disruption of Krox-20 results in alteration of rhombomeres 3 and 5 in the developing hindbrain. Cell 75, 1199–214
    OpenUrlCrossRefPubMedWeb of Science
    1. Sockanathan S.,
    2. Jessell T. M.
    (1998) Motor neuron-derived retinoid signaling specifies the subtype identity of spinal motor neurons. Cell 94, 503–14
    OpenUrlCrossRefPubMedWeb of Science
    1. Tsuchida T.,
    2. Ensini M.,
    3. Morton S. B.,
    4. Baldassare M.,
    5. Edlund T.,
    6. Jessell T. M.,
    7. Pfaff S. L.
    (1994) Topographic organization of embryonic motor neurons defined by expression of LIM homeobox genes. Cell 79, 957–70
    OpenUrlCrossRefPubMedWeb of Science
    1. Wang H. U.,
    2. Chen Z. F.,
    3. Anderson D. J.
    (1998) Molecular distinctionand angiogenic interaction between embryonic arteries and veins revealed by ephrin-B2 and its receptor Eph-B4. Cell 93, 741–53
    OpenUrlCrossRefPubMedWeb of Science
    1. Xu Q.,
    2. Alldus G.,
    3. Holder N.,
    4. Wilkinson D. G.
    (1995) Expression of truncated Sek-1 receptor tyrosine kinase disrupts the segmental restriction of gene expression in the Xenopus and zebrafish hindbrain. Development 121, 4005–16
    OpenUrlAbstract
    1. Xu Q.,
    2. Mellitzer G.,
    3. Robinson V.,
    4. Wilkinson D. G.
    (1999) In vivo cell sorting in complementary segmental domains mediated by Eph receptors and ephrins. Nature 399, 267–71
    OpenUrlCrossRefPubMed
    1. Yoshimura N.,
    2. Fukuhara N.,
    3. Noguchi T.
    (1988) Sensori-motor neuropathy associated with congenital bilateral club feet: histological and ultrastructural study of the sural nerve. No To Shinkei 40, 857–861
    OpenUrlPubMed
Previous ArticleNext Article
Back to top
Previous ArticleNext Article

This Issue

 Download PDF

Email

Thank you for your interest in spreading the word on Development.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Targeting of the EphA4 tyrosine kinase receptor affects dorsal/ventral pathfinding of limb motor axons
(Your Name) has sent you a message from Development
(Your Name) thought you would like to see the Development web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
JOURNAL ARTICLES
Targeting of the EphA4 tyrosine kinase receptor affects dorsal/ventral pathfinding of limb motor axons
F. Helmbacher, S. Schneider-Maunoury, P. Topilko, L. Tiret, P. Charnay
Development 2000 127: 3313-3324;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Citation Tools
JOURNAL ARTICLES
Targeting of the EphA4 tyrosine kinase receptor affects dorsal/ventral pathfinding of limb motor axons
F. Helmbacher, S. Schneider-Maunoury, P. Topilko, L. Tiret, P. Charnay
Development 2000 127: 3313-3324;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Alerts

Please log in to add an alert for this article.

Sign in to email alerts with your email address

Article navigation

  • Top
  • Article
  • Info & metrics
  • PDF

Related articles

Cited by...

More in this TOC section

  • Non-imprinted Igf2r expression decreases growth and rescues the Tme mutation in mice
  • REF-1, a protein with two bHLH domains, alters the pattern of cell fusion in C. elegans by regulating Hox protein activity
  • Centrosome migration into the Drosophila oocyte is independent of BicD and egl, and of the organisation of the microtubule cytoskeleton
Show more JOURNAL ARTICLES

Similar articles

Other journals from The Company of Biologists

Journal of Cell Science

Journal of Experimental Biology

Disease Models & Mechanisms

Biology Open

Advertisement

A new society for regenerative biologists

Kenneth Poss and Elly Tanaka announce the launch of the International Society for Regenerative Biology (ISRB), which will promote research and education in the field of regenerative biology.


Upcoming special issue: call for papers

The Immune System in Development and Regeneration
Guest editors: Florent Ginhoux and Paul Martin
Submission deadline: 1 September 2021
Publication: Spring 2022

The special issue welcomes Review articles as well as Research articles, and will be widely promoted online and at key global conferences.


An interview with Cagney Coomer

Over a virtual chat, we spoke to Cagney Coomer about her experiences in the lab, the classroom and the community centre, and why she thinks outreach and role models are vital to science.


Development presents...

Our successful webinar series continues into 2021, with early-career researchers presenting their papers and a chance to virtually network with the developmental biology community afterwards. Here, Michèle Romanos talks about her new preprint, which mixes experimentation in quail embryos and computational modelling to understand how heterogeneity in a tissue influences cell rate.

Save your spot at our next session:

10 March
Time: 9:00 (GMT)
Chaired by: Thomas Lecuit

Join our mailing list to receive news and updates on the series.

Articles

  • Accepted manuscripts
  • Latest complete issue
  • Issue archive
  • Archive by article type
  • Special issues
  • Subject collections
  • Sign up for alerts

About us

  • About Development
  • About the Node
  • Editors and board
  • Editor biographies
  • Travelling Fellowships
  • Grants and funding
  • Journal Meetings
  • Workshops
  • The Company of Biologists

For authors

  • Submit a manuscript
  • Aims and scope
  • Presubmission enquiries
  • Article types
  • Manuscript preparation
  • Cover suggestions
  • Editorial process
  • Promoting your paper
  • Open Access
  • Biology Open transfer

Journal info

  • Journal policies
  • Rights and permissions
  • Media policies
  • Reviewer guide
  • Sign up for alerts

Contact

  • Contact Development
  • Subscriptions
  • Advertising
  • Feedback
  • Institutional usage stats (logged-in users only)

 Twitter   YouTube   LinkedIn

© 2021   The Company of Biologists Ltd   Registered Charity 277992