Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Sign up for alerts
  • About us
    • About Development
    • About the Node
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contacts
    • Subscriptions
    • Feedback
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

User menu

  • Log in
  • Log out

Search

  • Advanced search
Development
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

supporting biologistsinspiring biology

Development

  • Log in
Advanced search

RSS  Twitter  Facebook  YouTube 

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Sign up for alerts
  • About us
    • About Development
    • About the Node
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contacts
    • Subscriptions
    • Feedback
JOURNAL ARTICLES
Extraocular mesenchyme patterns the optic vesicle during early eye development in the embryonic chick
S. Fuhrmann, E.M. Levine, T.A. Reh
Development 2000 127: 4599-4609;
S. Fuhrmann
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
E.M. Levine
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
T.A. Reh
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & metrics
  • PDF
Loading

Summary

The vertebrate eye develops from the neuroepithelium of the ventral forebrain by the evagination and formation of the optic vesicle. Classical embryological studies have shown that the surrounding extraocular tissues - the surface ectoderm and extraocular mesenchyme - are necessary for normal eye growth and differentiation. We have used explant cultures of chick optic vesicles to study the regulation of retinal pigmented epithelium (RPE) patterning and differentiation during early eye development. Our results show that extraocular mesenchyme is required for the induction and maintenance of expression of the RPE-specific genes Mitf and Wnt13 and the melanosomal matrix protein MMP115. In the absence of extraocular tissues, RPE development did not occur. Replacement of the extraocular mesenchyme with cranial mesenchyme, but not lateral plate mesoderm, could rescue expression of the RPE-marker Mitf. In addition to activating expression of RPE-specific genes, the extraocular mesenchyme inhibits the expression of the neural retina-specific transcription factor Chx10 and downregulates the eye-specific transcription factors Pax6 and Optx2. The TGF(β) family member activin can substitute for the extraocular mesenchyme by promoting expression of the RPE-specific genes and downregulating expression of the neural retina-specific markers. These data indicate that extraocular mesenchyme, and possibly an activin-like signal, pattern the domains of the optic vesicle into RPE and neural retina.

REFERENCES

    1. Ameerun R. F.,
    2. de Winter J. P.,
    3. van den Eijnden-van Raaij A. J.,
    4. den Hertog J.,
    5. de Laat S. W.,
    6. Tertoolen L. G.
    (1996) Activin and basic fibroblast growth factor regulate neurogenesis of murine embryonal carcinoma cells. Cell Growth Differ 7, 1679–1688
    OpenUrlAbstract
    1. Belecky-Adams T.,
    2. Tomarev S.,
    3. Li H. S.,
    4. Ploder L.,
    5. McInnes R. R.,
    6. Sundin O.,
    7. Adler R.
    (1997) Pax-6, Prox 1, and Chx10 homeobox gene expression correlates with phenotypic fate of retinal precursor cells. Invest. Ophthalmol. Vis. Sci 38, 1293–1303
    OpenUrlAbstract/FREE Full Text
    1. Bentley N. J.,
    2. Eisen T.,
    3. Goding C. R.
    (1994) Melanocyte-specific expression of the human tyrosinase promoter: activation by the microphthalmia gene product and role of the initiator. Mol. Cell Biol 14, 7996–8006
    OpenUrlAbstract/FREE Full Text
    1. Boissy R. E.,
    2. Boissy Y. L.,
    3. Krakowsky J. M.,
    4. Lamoreux M. L.,
    5. Lingrel J. B.,
    6. Nordlund J. J.
    (1993) Ocular pathology in mice with a transgenic insertion at the microphthalmia locus. J. Submicrosc. Cytol. Pathol 25, 319–332
    OpenUrlPubMed
    1. Bora N.,
    2. Conway S. J.,
    3. Liang H.,
    4. Smith S. B.
    (1998) Transient overexpression of the Microphthalmia gene in the eyes of Microphthalmia vitiligo mutant mice. Dev. Dyn 213, 283–292
    OpenUrlCrossRefPubMedWeb of Science
    1. Bumsted K. M.,
    2. Barnstable C. J.
    (2000) Dorsal retinal pigment epithelium differentiates as neural retina in the microphthalmia (mi/mi) mouse. Invest. Ophthalmol. Vis. Sci 41, 903–908
    OpenUrlAbstract/FREE Full Text
    1. Burmeister M.,
    2. Novak J.,
    3. Liang M. Y.,
    4. Basu S.,
    5. Ploder L.,
    6. Hawes N. L.,
    7. Vidgen D.,
    8. Hoover F.,
    9. Goldman D.,
    10. Kalnins V. I.,
    11. et al.
    (1996) Ocular retardation mouse caused by Chx10 homeobox null allele: impaired retinal progenitor proliferation and bipolar cell differentiation. Nat. Genet 12, 376–384
    OpenUrlCrossRefPubMedWeb of Science
    1. Buse E.,
    2. de Groot H.
    (1991) Generation of developmental patterns in the neuroepithelium of the developing mammalian eye: the pigment epithelium of the eye. Neurosci. Lett 126, 63–66
    OpenUrlCrossRefPubMed
    1. Connolly D. J.,
    2. Patel K.,
    3. Seleiro E. A.,
    4. Wilkinson D. G.,
    5. Cooke J.
    (1995) Cloning, sequencing, and expressional analysis of the chick homologue of follistatin. Dev. Genet 17, 65–77
    OpenUrlCrossRefPubMedWeb of Science
    1. de Iongh R.,
    2. McAvoy J. W.
    (1993) Spatio-temporal distribution of acidic and basic FGF indicates a role for FGF in rat lens morphogenesis. Dev. Dyn 198, 190–202
    OpenUrlPubMedWeb of Science
    1. Desire L.,
    2. Head M. W.,
    3. Fayein N. A.,
    4. Courtois Y.,
    5. Jeanny J. C.
    (1998) Suppression of fibroblast growth factor 2 expression by antisense oligonucleotides inhibits embryonic chick neural retina cell differentiation and survival in vivo. Dev. Dyn 212, 63–74
    OpenUrlCrossRefPubMedWeb of Science
    1. Dohrmann C. E.,
    2. Hemmati-Brivanlou A.,
    3. Thomsen G. H.,
    4. Fields A.,
    5. Woolf T. M.,
    6. Melton D. A.
    (1993) Expression of activin mRNA during early development in Xenopus laevis. Dev. Biol 157, 474–483
    OpenUrlCrossRefPubMedWeb of Science
    1. Dragomirov N. I.
    (1937) The influence of the neighbouring ectoderm on the organization of the eye rudiment. Dokl. Akad. nauk 15, 61–64
    OpenUrl
    1. Etchevers H. C.,
    2. Couly G.,
    3. Vincent C.,
    4. Le Douarin N. M.
    (1999) Anterior cephalic neural crest is required for forebrain viability. Development 126, 3533–3543
    OpenUrlAbstract
    1. Fang J.,
    2. Wang S. Q.,
    3. Smiley E.,
    4. Bonadio J.
    (1997) Genes coding for mouse activin beta C and beta E are closely linked and exhibit a liver-specific expression pattern in adult tissues. Biochem. Biophys. Res. Commun 231, 655–661
    OpenUrlCrossRefPubMedWeb of Science
    1. Fang J.,
    2. Yin W.,
    3. Smiley E.,
    4. Wang S. Q.,
    5. Bonadio J.
    (1996) Molecular cloning of the mouse activin beta E subunit gene. Biochem. Biophys. Res. Commun 228, 669–674
    OpenUrlCrossRefPubMedWeb of Science
    1. Feijen A.,
    2. Goumans M. J.,
    3. van den Eijnden-van Raaij A. J.
    (1994) Expression of activin subunits, activin receptors and follistatin in postimplantation mouse embryos suggests specific developmental functions for different activins. Development 120, 3621–3637
    OpenUrlAbstract
    1. Furuta Y.,
    2. Hogan B. L. M.
    (1998) BMP4 is essential for lens induction in the mouse embryo. Genes Dev 12, 3764–3775
    OpenUrlAbstract/FREE Full Text
    1. Guillemot F.,
    2. Cepko C. L.
    (1992) Retinal fate and ganglion cell differentiation are potentiated by acidic FGF in an in vitro assay of early retinal development. Development 114, 743–754
    OpenUrlAbstract
    1. Hamburger V.,
    2. Hamilton H. L.
    (1951) A series of normal stages in the development of the chick embryo. J. Morphol 88, 49–92
    OpenUrlCrossRefWeb of Science
    1. Henrique D.,
    2. Adam J.,
    3. Myat A.,
    4. Chitnis A.,
    5. Lewis J.,
    6. Ish-Horowicz D.
    (1995) Expression of a Delta homologue in prospective neurons in the chick. Nature 375, 787–790
    OpenUrlCrossRefPubMed
    1. Hilfer S. R.
    (1983) Development of the eye of the chick embryo. Scanning Electron Microsc 3, 1353–1369
    OpenUrl
    1. Hollyday M.,
    2. McMahon J. A.,
    3. McMahon A. P.
    (1995) Wnt expression patterns in chick embryo nervous system. Mech. Dev 52, 9–25
    OpenUrlCrossRefPubMedWeb of Science
    1. Hyer J.,
    2. Mima T.,
    3. Mikawa T.
    (1998) FGF1 patterns the optic vesicle by directing the placement of the neural retina domain. Development 125, 869–877
    OpenUrlAbstract
    1. Jaffe G. J.,
    2. Harrison C. E.,
    3. Lui G. M.,
    4. Roberts W. L.,
    5. Goldsmith P. C.,
    6. Mesiano S.,
    7. Jaffe R. B.
    (1994) Activin expression by cultured human retinal pigment epithelial cells. Invest. Ophthalmol. Vis. Sci 35, 2924–2931
    OpenUrlAbstract/FREE Full Text
    1. Jasoni C.,
    2. Hendrickson A.,
    3. Roelink H.
    (1999) Analysis of chicken Wnt-13 expression demonstrates coincidence with cell division in the developing eye and is consistent with a role in induction. Dev. Dyn 215, 215–224
    OpenUrlCrossRefPubMedWeb of Science
    1. Johnston M. C.,
    2. Noden D. M.,
    3. Hazelton R. D.,
    4. Coulombre J. L.,
    5. Coulombre A. J.
    (1979) Origins of avian ocular and periocular tissues. Exp. Eye Res 29, 27–43
    OpenUrlCrossRefPubMedWeb of Science
    1. Kaufman M.
    (1979) Cephalic neurulation and optic vesicle formation in the early mouse embryo. Am. J. Anat 155, 425–443
    OpenUrlCrossRefPubMedWeb of Science
    1. Kawakami A.,
    2. Kimura-Kawakami M.,
    3. Nomura T.,
    4. Fujisawa H.
    (1997) Distributions of PAX6 and PAX7 proteins suggest their involvement in both early and late phases of chick brain development. Mech. Dev 66, 119–130
    OpenUrlCrossRefPubMedWeb of Science
    1. Levine E. M.,
    2. Hitchcock P. F.,
    3. Glasgow E.,
    4. Schechter N.
    (1994) Restricted expression of a new paired-class homeobox gene in normal and regenerating adult goldfish retina. J. Comp. Neurol 348, 596–606
    OpenUrlCrossRefPubMedWeb of Science
    1. Levine E. M.,
    2. Schechter N.
    (1993) Homeobox genes are expressed in the retina and brain of adult goldfish. Proc. Natl. Acad. Sci. USA 90, 2729–2733
    OpenUrlAbstract/FREE Full Text
    1. Li H. S.,
    2. Yang J. M.,
    3. Jacobson R. D.,
    4. Pasko D.,
    5. Sundin O.
    (1994) Pax-6 is first expressed in a region of ectoderm anterior to the early neuralplate: implications for stepwise determination of the lens. Dev. Biol 162, 181–194
    OpenUrlCrossRefPubMedWeb of Science
    1. Liu I. S.,
    2. Chen J. D.,
    3. Ploder L.,
    4. Vidgen D.,
    5. van der Kooy D.,
    6. Kalnins V. I.,
    7. McInnes R. R.
    (1994) Developmental expression of a novel murine homeobox gene (Chx10): evidence for roles in determination of the neuroretina and inner nuclear layer. Neuron 13, 377–393
    OpenUrlCrossRefPubMedWeb of Science
    1. Mahmood R.,
    2. Kiefer P.,
    3. Guthrie S.,
    4. Dickson C.,
    5. Mason I.
    (1995) Multiple roles for FGF-3 during cranial neural development in the chicken. Development 121, 1399–1410
    OpenUrlAbstract
    1. Matzuk M. M.,
    2. Kumar T. R.,
    3. Bradley A.
    (1995) Different phenotypes for mice deficient in either activins or activin receptor type II. Nature 374, 356–360
    OpenUrlCrossRefPubMed
    1. Mochii M.,
    2. Agata K.,
    3. Eguchi G.
    (1991) Complete sequence and expression of a cDNA encoding a chicken 115-kDa melanosomal matrix protein. Pigment Cell Res 4, 41–47
    OpenUrlCrossRefPubMed
    1. Mochii M.,
    2. Agata K.,
    3. Kobayashi H.,
    4. Yamamoto T. S.,
    5. Eguchi G.
    (1988) Expression of gene coding for a melanosomal matrix protein transcriptionally regulated in the transdifferentiation of chick embryo pigmented epithelial cells. Cell Differ 24, 67–74
    OpenUrlCrossRefPubMedWeb of Science
    1. Mochii M.,
    2. Mazaki Y.,
    3. Mizuno N.,
    4. Hayashi H.,
    5. Eguchi G.
    (1998) Role of Mitf in differentiation and transdifferentiation of chicken pigmented epithelial cell. Dev. Biol 193, 47–62
    OpenUrlCrossRefPubMedWeb of Science
    1. Nakayama A.,
    2. Nguyen M. T.,
    3. Chen C. C.,
    4. Opdecamp K.,
    5. Hodgkinson C. A.,
    6. Arnheiter H.
    (1998) Mutations in microphthalmia, the mousehomolog of the human deafness gene MITF, affect neuroepithelial and neural crest-derived melanocytes differently. Mech. Dev 70, 155–166
    OpenUrlCrossRefPubMedWeb of Science
    1. Nomura M.,
    2. Li E.
    (1998) Smad2 role in mesoderm formation, left-right patterning and craniofacial development. Nature 393, 786–790
    OpenUrlCrossRefPubMed
    1. Nottoli T.,
    2. Hagopian-Donaldson S.,
    3. Zhang J.,
    4. Perkins A.,
    5. Williams T.
    (1998) AP-2-null cells disrupt morphogenesis of the eye, face, and limbs in chimeric mice. Proc. Natl. Acad. Sci. USA 95, 13714–13719
    OpenUrlAbstract/FREE Full Text
    1. O'Bryan M. K.,
    2. Sebire K. L.,
    3. Gerdprasert O.,
    4. Hedger M. P.,
    5. Hearn M. T.,
    6. de Kretser D. M.
    (2000) Cloning and regulation of the rat activin betaE subunit. J. Mol. Endocrinol 24, 409–418
    OpenUrlAbstract
    1. Oda S.,
    2. Nishimatsu S.,
    3. Murakami K.,
    4. Ueno N.
    (1995) Molecular cloning and functional analysis of a new activin beta subunit: a dorsal mesoderm-inducing activity in Xenopus. Biochem. Biophys. Res. Commun 210, 581–588
    OpenUrlCrossRefPubMedWeb of Science
    1. Park C. M.,
    2. Hollenberg M. J.
    (1989) Basic fibroblast growth factor induces retinal regeneration in vivo. Dev. Biol 134, 201–205
    OpenUrlCrossRefPubMedWeb of Science
    1. Passini M. A.,
    2. Levine E. M.,
    3. Canger A. K.,
    4. Raymond P. A.,
    5. Schechter N.
    (1997) Vsx-1 and Vsx-2: differential expression of two paired-like homeobox genes during zebrafish and goldfish retinogenesis. J. Comp. Neurol 388, 495–505
    OpenUrlCrossRefPubMedWeb of Science
    1. Pittack C.,
    2. Grunwald G. B.,
    3. Reh T. A.
    (1997) Fibroblast growth factors are necessary for neural retina but not pigmented epithelium differentiation in chick embryos. Development 124, 805–816
    OpenUrlAbstract
    1. Pittack C.,
    2. Jones M.,
    3. Reh T. A.
    (1991) Basic fibroblast growth factor induces retinal pigment epithelium to generate neural retina in vitro. Development 113, 577–588
    OpenUrlAbstract
    1. Shen H.,
    2. Wilke T.,
    3. Ashique A. M.,
    4. Narvey M.,
    5. Zerucha T.,
    6. Savino E.,
    7. Williams T.,
    8. Richman J. M.
    (1997) Chicken transcription factor AP-2: cloning, expression and its role in outgrowth of facial prominences and limb buds. Dev. Biol 188, 248–266
    OpenUrlCrossRefPubMedWeb of Science
    1. Song J.,
    2. Oh S. P.,
    3. Schrewe H.,
    4. Nomura M.,
    5. Lei H.,
    6. Okano M.,
    7. Gridley T.,
    8. Li E.
    (1999) The type II activin receptors are essential for egg cylinder growth, gastrulation, and rostral head development in mice. Dev. Biol 213, 157–169
    OpenUrlCrossRefPubMedWeb of Science
    1. Stern C. D.,
    2. Yu R. T.,
    3. Kakizuka A.,
    4. Kintner C. R.,
    5. Mathews L. S.,
    6. Vale W. W.,
    7. Evans R. M.,
    8. Umesono K.
    (1995) Activin and its receptors during gastrulation and the later phases of mesoderm development in the chick embryo. Dev. Biol 172, 192–205
    OpenUrlCrossRefPubMedWeb of Science
    1. Stroeva O. G.
    (1960) Eperimental analysis of the eye morphogenesis in mammals. J. Embryol. Exp. Morph 8, 349–368
    OpenUrl
    1. Toy J.,
    2. Yang J. M.,
    3. Leppert G. S.,
    4. Sundin O. H.
    (1998) The optx2 homeobox gene is expressed in early precursors of the eye and activates retina-specific genes. Proc. Natl. Acad. Sci. USA 95, 10643–10648
    OpenUrlAbstract/FREE Full Text
    1. Turque N.,
    2. Denhez F.,
    3. Martin P.,
    4. Planque N.,
    5. Bailly M.,
    6. Begue A.,
    7. Stehelin D.,
    8. Saule S.
    (1996) Characterization of a new melanocyte-specific gene (QNR-71) expressed in v-myc-transformed quail neuroretina. EMBO J 15, 3338–3350
    OpenUrlPubMedWeb of Science
    1. Vassalli A.,
    2. Matzuk M. M.,
    3. Gardner H. A.,
    4. Lee K. F.,
    5. Jaenisch R.
    (1994) Activin/inhibin beta B subunit gene disruption leads to defects in eyelid development and female reproduction. Genes Dev 8, 414–427
    OpenUrlAbstract/FREE Full Text
    1. West-Mays J. A.,
    2. Zhang J.,
    3. Nottoli T.,
    4. Hagopian-Donaldson S.,
    5. Libby D.,
    6. Strissel K. J.,
    7. Williams T.
    (1999) AP-2alpha transcription factor is required for early morphogenesis of the lens vesicle. Dev. Biol 206, 46–62
    OpenUrlCrossRefPubMedWeb of Science
    1. Winkler S.,
    2. Loosli F.,
    3. Henrich T.,
    4. Wakamatsu Y.,
    5. Wittbrodt J.
    (2000) The conditional medaka mutation eyeless uncouples patterning and morphogenesis of the eye. Development 127, 1911–1919
    OpenUrlAbstract
    1. Yasumoto K.,
    2. Yokoyama K.,
    3. Shibata K.,
    4. Tomita Y.,
    5. Shibahara S.
    (1994) Microphthalmia-associated transcription factor as a regulator for melanocyte-specific transcription of the human tyrosinase gene. Mol. Cell Biol 14, 8058–8070
    OpenUrlAbstract/FREE Full Text
    1. Yasumoto K.,
    2. Yokoyama K.,
    3. Takahashi K.,
    4. Tomita Y.,
    5. Shibahara S.
    (1997) Functional analysis of microphthalmia-associated transcription factor in pigment cell-specific transcription of the human tyrosinase family genes. J. Biol. Chem 272, 503–509
    OpenUrlAbstract/FREE Full Text
    1. Zhao S.,
    2. Thornquist S. C.,
    3. Barnstable C. J.
    (1995) In vitro transdifferentiation of embryonic rat retinal pigment epithelium to neural retina. Brain Res 677, 300–310
    OpenUrlCrossRefPubMedWeb of Science
Previous ArticleNext Article
Back to top
Previous ArticleNext Article

This Issue

 Download PDF

Email

Thank you for your interest in spreading the word on Development.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Extraocular mesenchyme patterns the optic vesicle during early eye development in the embryonic chick
(Your Name) has sent you a message from Development
(Your Name) thought you would like to see the Development web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
JOURNAL ARTICLES
Extraocular mesenchyme patterns the optic vesicle during early eye development in the embryonic chick
S. Fuhrmann, E.M. Levine, T.A. Reh
Development 2000 127: 4599-4609;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Citation Tools
JOURNAL ARTICLES
Extraocular mesenchyme patterns the optic vesicle during early eye development in the embryonic chick
S. Fuhrmann, E.M. Levine, T.A. Reh
Development 2000 127: 4599-4609;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Alerts

Please log in to add an alert for this article.

Sign in to email alerts with your email address

Article navigation

  • Top
  • Article
  • Info & metrics
  • PDF

Related articles

Cited by...

More in this TOC section

  • Morphogenetic cell movements in the middle region of the dermomyotome dorsomedial lip associated with patterning and growth of the primary epaxial myotome
  • Germline and developmental roles of the nuclear transport factor importin (α)3 in C. elegans
  • Monofocal origin of telencephalic oligodendrocytes in the anterior entopeduncular area of the chick embryo
Show more JOURNAL ARTICLES

Similar articles

Other journals from The Company of Biologists

Journal of Cell Science

Journal of Experimental Biology

Disease Models & Mechanisms

Biology Open

Advertisement

Kathryn Virginia Anderson (1952-2020)

Developmental geneticist Kathryn Anderson passed away at home on 30 November 2020. Tamara Caspary, a former postdoc and friend, remembers Kathryn and her remarkable contribution to developmental biology.


Zooming into 2021

In a new Editorial, Editor-in-Chief James Briscoe and Executive Editor Katherine Brown reflect on the triumphs and tribulations of the last 12 months, and look towards a hopefully calmer and more predictable year.


Read & Publish participation extends worldwide

Over 60 institutions in 12 countries are now participating in our Read & Publish initiative. Here, James Briscoe explains what this means for his institution, The Francis Crick Institute. Find out more and view our full list of participating institutions.


Upcoming special issues

Imaging Development, Stem Cells and Regeneration
Submission deadline: 30 March 2021
Publication: mid-2021

The Immune System in Development and Regeneration
Guest editors: Florent Ginhoux and Paul Martin
Submission deadline: 1 September 2021
Publication: Spring 2022

Both special issues welcome Review articles as well as Research articles, and will be widely promoted online and at key global conferences.


Development presents...

Our successful webinar series continues into 2021, with early-career researchers presenting their papers and a chance to virtually network with the developmental biology community afterwards. Sign up to join our next session:

10 February
Time: 13:00 (GMT)
Chaired by: preLights

Articles

  • Accepted manuscripts
  • Issue in progress
  • Latest complete issue
  • Issue archive
  • Archive by article type
  • Special issues
  • Subject collections
  • Sign up for alerts

About us

  • About Development
  • About the Node
  • Editors and board
  • Editor biographies
  • Travelling Fellowships
  • Grants and funding
  • Journal Meetings
  • Workshops
  • The Company of Biologists

For authors

  • Submit a manuscript
  • Aims and scope
  • Presubmission enquiries
  • Article types
  • Manuscript preparation
  • Cover suggestions
  • Editorial process
  • Promoting your paper
  • Open Access
  • Biology Open transfer

Journal info

  • Journal policies
  • Rights and permissions
  • Media policies
  • Reviewer guide
  • Sign up for alerts

Contact

  • Contact Development
  • Subscriptions
  • Advertising
  • Feedback

 Twitter   YouTube   LinkedIn

© 2021   The Company of Biologists Ltd   Registered Charity 277992