Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Sign up for alerts
  • About us
    • About Development
    • About the Node
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contacts
    • Subscriptions
    • Feedback
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

User menu

  • Log in
  • Log out

Search

  • Advanced search
Development
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

supporting biologistsinspiring biology

Development

  • Log in
Advanced search

RSS  Twitter  Facebook  YouTube 

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Sign up for alerts
  • About us
    • About Development
    • About the Node
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contacts
    • Subscriptions
    • Feedback
JOURNAL ARTICLES
Placental vascularisation requires the AP-1 component fra1
M. Schreiber, Z.Q. Wang, W. Jochum, I. Fetka, C. Elliott, E.F. Wagner
Development 2000 127: 4937-4948;
M. Schreiber
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Z.Q. Wang
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
W. Jochum
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
I. Fetka
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
C. Elliott
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
E.F. Wagner
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & metrics
  • PDF
Loading

Summary

Fra1 is an immediate-early gene encoding a member of the AP-1 transcription factor family, which has diverse roles in development and oncogenesis. To determine the function of Fra1 in mouse development, the gene was inactivated by gene targeting. Foetuses lacking Fra1 were severely growth retarded and died between E10.0 and E10.5, owing to defects in extra-embryonic tissues. The placental labyrinth layer, where X-gal staining revealed expression of Fra1, was reduced in size and largely avascular, owing to a marked decrease in the number of vascular endothelial cells, as shown by the lack of Flk1 expression. In contrast, the spongiotrophoblast layer was unaffected and expressed the marker genes 4311 (Tpbp) and Flt1. Furthermore, mutant foetuses exhibited yolk-sac defects that may contribute to their growth retardation and lethality. Importantly, when the placental defect was rescued by injection of Fra1(−)(/)(−) ES cells into tetraploid wild-type blastocysts, Fra1(−)(/)(−) pups were obtained that were no longer growth retarded and survived up to 2 days after birth without apparent phenotypic defects. These data indicate that a defect in the extra-embryonic compartment is causal to the observed lethality, and suggest that Fra1 plays a crucial role in establishing normal vascularisation of the placenta.

REFERENCES

    1. Aguzzi A.,
    2. Wagner E. F.,
    3. Williams R. L.,
    4. Courtneidge S. A.
    (1990) Sympathetic hyperplasia and neuroblastomas in transgenic mice expressing polyoma middle T antigen. New Biol 2, 533–543
    OpenUrlPubMed
    1. Angel P.,
    2. Karin M.
    (1991) The role of Jun, Fos and the AP-1 complex in cell-proliferation and transformation. Biochim. Biophys. Acta 1072, 129–157
    OpenUrlPubMed
    1. Bergers G.,
    2. Graninger P.,
    3. Braselmann S.,
    4. Wrighton C.,
    5. Busslinger M.
    (1995) Transcriptional activation of the fra-1 gene by AP-1 is mediated by regulatory sequences in the first intron. Mol. Cell Biol 15, 3748–3758
    OpenUrlAbstract/FREE Full Text
    1. Birkedal-Hansen H.,
    2. Moore W. G. I.,
    3. Bodden M. K.,
    4. Windsor L. C.,
    5. Birkedal-Hansen B.,
    6. DeCarlo A.,
    7. Engler J. A.
    (1993) Matrix metalloproteinases: a review. Crit. Rev. Oral Biol. Med 4, 197–250
    OpenUrlAbstract/FREE Full Text
    1. Bonnerot C.,
    2. Rocancourt D.,
    3. Briand P.,
    4. Grimber G.,
    5. Nicolas J. F.
    (1987) A beta-galactosidase hybrid protein targeted to nuclei as a marker for developmental studies. Proc. Natl. Acad. Sci. USA 84, 6795–6799
    OpenUrlAbstract/FREE Full Text
    1. Breier G.,
    2. Clauss M.,
    3. Risau W.
    (1995) Coordinate expression of vascular endothelial growth factor receptor (flt-1) and its ligand suggests a paracrine regulation of murine vascular development. Dev. Dyn 204, 228–239
    OpenUrlCrossRefPubMedWeb of Science
    1. Brown J. R.,
    2. Ye H.,
    3. Bronson R. T.,
    4. Dikkes P.,
    5. Greenberg M. E.
    (1996) A defect in nurturing in mice lacking the immediate early gene fosB. Cell 86, 297–309
    OpenUrlCrossRefPubMedWeb of Science
    1. Brusselbach S.,
    2. Möhle-Steinlein U.,
    3. Wang Z.-Q.,
    4. Schreiber M.,
    5. Lucibello F. C.,
    6. Muller R.,
    7. Wagner E. F.
    (1995) Cell proliferation and cell cycle progression are not impaired in fibroblasts and ES cells lacking c-Fos. Oncogene 10, 79–86
    OpenUrlPubMedWeb of Science
    1. Carmeliet P.,
    2. Ferreira V.,
    3. Breier G.,
    4. Pollefeyt S.,
    5. Kieckens L.,
    6. Gertsenstein M.,
    7. Fahrig M.,
    8. Vandenhoeck A.,
    9. Harpal K.,
    10. Eberhardt C.,
    11. et al.
    (1996) Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature 380, 435–439
    OpenUrlCrossRefPubMedWeb of Science
    1. Chen W. S.,
    2. Manova K.,
    3. Weinstein D. C.,
    4. Duncan S. A.,
    5. Plump A. S.,
    6. Prezioso V. R.,
    7. Bachvarova R. F.,
    8. Darnell J. E., Jr
    (1994) Disruption of the HNF-4 gene, expressed in visceral endoderm, leads to cell death in embryonic ectoderm and impaired gastrulation of mouse embryos. Genes Dev 8, 2466–2477
    OpenUrlAbstract/FREE Full Text
    1. Cohen D. R.,
    2. Curran T.
    (1988) fra-1: a serum-inducible, cellular immediate-early gene that encodes a fos-related antigen. Mol. Cell Biol 8, 2063–2069
    OpenUrlAbstract/FREE Full Text
    1. Cohen D. R.,
    2. Ferreira P. C.,
    3. Gentz R.,
    4. Franza B. R., Jr,
    5. Curran T.
    (1989) The product of a fos-related gene, fra-1, binds cooperatively to the AP-1 site with Jun: transcription factor AP-1 is comprised of multiple protein complexes. Genes Dev 3, 173–184
    OpenUrlAbstract/FREE Full Text
    1. Copp A. J.
    (1995) Death before birth: clues from gene knockouts and mutations. Trends Genet 11, 87–93
    OpenUrlCrossRefPubMedWeb of Science
    1. Cross J. C.,
    2. Werb Z.,
    3. Fisher S. J.
    (1994) Implantation and the placenta: key pieces of the development puzzle. Science 266, 1508–1518
    OpenUrlAbstract/FREE Full Text
    1. Deng T.,
    2. Karin M.
    (1993) JunB differs from c-Jun in its DNA-binding and dimerization domains, and represses c-Jun by formation of inactive heterodimers. Genes Dev 7, 479–490
    OpenUrlAbstract/FREE Full Text
    1. Devary Y.,
    2. Gottlieb R. A.,
    3. Smeal T.,
    4. Karin M.
    (1992) The mammalian ultraviolet response is triggered by activation of Src tyrosine kinases. Cell 71, 1081–1091
    OpenUrlCrossRefPubMedWeb of Science
    1. Doetschman T. C.,
    2. Eistetter H.,
    3. Katz M.,
    4. Schmidt W.,
    5. Kemler R.
    (1985) The in vitro development of blastocyst-derived embryonic stem cell lines: formation of visceral yolk sac, blood islands and myocardium. J. Embryol. Exp. Morphol 87, 27–45
    OpenUrlPubMedWeb of Science
    1. Eferl R.,
    2. Sibilia M.,
    3. Hilberg F.,
    4. Fuchsbichler A.,
    5. Kufferath I.,
    6. Guertl B.,
    7. Zenz R.,
    8. Wagner E. F.,
    9. Zatloukal K.
    (1999) Functions of c-Jun in liver and heart development. J. Cell. Biol 145, 1049–1061
    OpenUrlAbstract/FREE Full Text
    1. Ferrara N.,
    2. Carver-Moore K.,
    3. Chen H.,
    4. Dowd M.,
    5. Lu L.,
    6. O'Shea K. S.,
    7. Powell-Braxton L.,
    8. Hillan K.J.,
    9. Moore M. W.
    (1996) Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature 380, 439–442
    OpenUrlCrossRefPubMedWeb of Science
    1. Fong G.-H.,
    2. Rossant J.,
    3. Gertsenstein M.,
    4. Breitman M.L.
    (1995) Role of the Flt-1 receptor tyrosine kinase in regulating the assembly of vascular endothelium. Nature 376, 66–70
    OpenUrlCrossRefPubMedWeb of Science
    1. Grigoriadis A. E.,
    2. Schellander K.,
    3. Wang Z. Q.,
    4. Wagner E. F.
    (1993) Osteoblasts are target cells for transformation in c-fos transgenic mice. J. Cell Biol 122, 685–701
    OpenUrlAbstract/FREE Full Text
    1. Grigoriadis A. E.,
    2. Wang Z. Q.,
    3. Cecchini M. G.,
    4. Hofstetter W.,
    5. Felix R.,
    6. Fleisch H. A.,
    7. Wagner E. F.
    (1994) c-Fos: a key regulator of osteoclast-macrophage lineage determination and bone remodeling. Science 266, 443–448
    OpenUrlAbstract/FREE Full Text
    1. Groskopf J. C.,
    2. Linzer D. I.
    (1994) Characterization of a delayed early serum response region. Mol. Cell Biol 14, 6013–6020
    OpenUrlAbstract/FREE Full Text
    1. Gruda M. C.,
    2. van Amsterdam J.,
    3. Rizzo C. A.,
    4. Durham S. K.,
    5. Lira S.,
    6. Bravo R.
    (1996) Expression of FosB during mouse development: normal development of FosB knockout mice. Oncogene 12, 2177–2185
    OpenUrlPubMedWeb of Science
    1. Guillemot F.,
    2. Nagy A.,
    3. Auerbach A.,
    4. Rossant J.,
    5. Joyner A. L.
    (1994) Essential role of Mash-2 in extraembryonic development. Nature 371, 333–336
    OpenUrlCrossRefPubMed
    1. Gurtner G. C.,
    2. Davis V.,
    3. Li H.,
    4. McCoy M. J.,
    5. Sharpe A.,
    6. Cybulsky M. I.
    (1995) Targeted disruption of the murine VCAM1 gene: essential role of VCAM-1 in chorioallantoic fusion and placentation. Genes Dev 9, 1–14
    OpenUrlAbstract/FREE Full Text
    1. Healy A. M.,
    2. Rayburn H. B.,
    3. Rosenberg R. D.,
    4. Weiler H.
    (1995) Absence of the blood-clotting regulator thrombomodulin causes embryonic lethality in mice before development of a functional cardiovascular system. Proc. Natl. Acad. Sci. USA 92, 850–854
    OpenUrlAbstract/FREE Full Text
    1. Hennigan R. F.,
    2. Hawker K. L.,
    3. Ozanne B. W.
    (1994) Fos-transformation activates genes associated with invasion. Oncogene 9, 3591–3600
    OpenUrlPubMedWeb of Science
    1. Hilberg F.,
    2. Aguzzi A.,
    3. Howells N.,
    4. Wagner E. F.
    (1993) c-jun is essential for normal mouse development and hepatogenesis [published erratum appears in Nature 366, p. 368]. Nature 365, 179–181
    OpenUrlCrossRefPubMed
    1. James R. M.,
    2. Klerkx A. H.,
    3. Keighren M.,
    4. Flockhart J. H.,
    5. West J. D.
    (1995) Restricted distribution of tetraploid cells in mouse tetraploid<==>diploid chimaeras. Dev. Biol 167, 213–226
    OpenUrlCrossRefPubMedWeb of Science
    1. Jochum W.,
    2. David J.-P.,
    3. Elliott C.,
    4. Wutz A.,
    5. Plenk H., Jr,
    6. Matsuo K.,
    7. Wagner E. F.
    (2000) Increased bone formation and osteosclerosis in mice overexpressing the transcription factor Fra-1. Nat. Med 6, 980–984
    OpenUrlCrossRefPubMedWeb of Science
    1. Johnson R. S.,
    2. Spiegelman B. M.,
    3. Papaioannou V.
    (1992) Pleiotropic effects of a null mutation in the c-fos proto-oncogene. Cell 71, 577–586
    OpenUrlCrossRefPubMedWeb of Science
    1. Johnson R. S.,
    2. van Lingen B.,
    3. Papaioannou V. E.,
    4. Spiegelman B. M.
    (1993) A null mutation at the c-jun locus causes embryonic lethality and retarded cell growth in culture. Genes Dev 7, 1309–1317
    OpenUrlAbstract/FREE Full Text
    1. Karin M.
    (1995) The regulation of AP-1 activity by mitogen-activated protein kinases. J. Biol. Chem 270, 16483–16486
    OpenUrlFREE Full Text
    1. Karin M.,
    2. Hunter T.
    (1995) Transcriptional control by protein phosphorylation: signal transmission from the cell surface to the nucleus. Curr. Biol 5, 747–757
    OpenUrlCrossRefPubMedWeb of Science
    1. Karin M.,
    2. Liu Z.,
    3. Zandi E.
    (1997) AP-1 function and regulation. Curr. Opin. Cell Biol 9, 240–246
    OpenUrlCrossRefPubMedWeb of Science
    1. Le Mouellic H.,
    2. Lallemand Y.,
    3. Brulet P.
    (1992). Homeosis in the mouse induced by a null mutation in the Hox-3.1 gene. Cell 69, 251–264
    OpenUrlCrossRefPubMedWeb of Science
    1. Leppä S.,
    2. Bohmann D.
    (1999) Diverse functions of JNK signaling and c-Jun in stress response and apoptosis. Oncogene 18, 6158–6162
    OpenUrlCrossRefPubMedWeb of Science
    1. Lescisin K. R.,
    2. Varmuza S.,
    3. Rossant J.
    (1988) Isolation and characterization of a novel trophoblast-specific cDNA in the mouse. Genes Dev 2, 1639–1649
    OpenUrlAbstract/FREE Full Text
    1. Li E.,
    2. Bestor T. H.,
    3. Jaenisch R.
    (1992) Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell 69, 915–926
    OpenUrlCrossRefPubMedWeb of Science
    1. Ma G. T.,
    2. Roth M. E.,
    3. Groskopf J. C.,
    4. Tsai F. Y.,
    5. Orkin S. H.,
    6. Grosveld F.,
    7. Engel J. D.,
    8. Linzer D. I.
    (1997) GATA-2 and GATA-3 regulate trophoblast-specific gene expression in vivo. Development 124, 907–914
    OpenUrlAbstract
    1. Mansour S. L.,
    2. Thomas K. R.,
    3. Capecchi M. R.
    (1988) Disruption of the proto-oncogene int-2 in mouse embryo-derived stem cells: a general strategy for targeting mutations to non-selectable genes. Nature 336, 348–352
    OpenUrlCrossRefPubMed
    1. Matsuo K.,
    2. Owens J. M.,
    3. Tonko M.,
    4. Elliott C.,
    5. Chambers T. J.,
    6. Wagner E. F.
    (2000) Fosl1 is a transcriptional target of c-Fos during osteoclast differentiation. Nat. Genet 24, 184–187
    OpenUrlCrossRefPubMedWeb of Science
    1. Muller R.,
    2. Verma I. M.,
    3. Adamson E. D.
    (1983) Expression of c-onc genes: c-fos transcripts accumulate to high levels during development of mouse placenta, yolk sac and amnion. EMBO J 2, 679–684
    OpenUrlPubMed
    1. Nagy A.,
    2. Gocza E.,
    3. Diaz E. M.,
    4. Prideaux V. R.,
    5. Ivanyi E.,
    6. Markkula M.,
    7. Rossant J.
    (1990) Embryonic stem cells alone are able to support fetal development in the mouse. Development 110, 815–821
    OpenUrlAbstract/FREE Full Text
    1. Nagy A.,
    2. Rossant J.,
    3. Nagy R.,
    4. Abramow Newerly W.,
    5. Roder J. C.
    (1993) Derivation of completely cell culture-derived mice from early-passage embryonic stem cells. Proc. Natl. Acad. Sci. USA 90, 8424–8428
    OpenUrlAbstract/FREE Full Text
    1. Owens J. M.,
    2. Matsuo K.,
    3. Nicholson G. C.,
    4. Wagner E. F.,
    5. Chambers T. J.
    (1999) Fra-1 potentiates osteoclastic differentiation in osteoclast-macrophage precursor cell lines. J. Cell Physiol 179, 170–178
    OpenUrlCrossRefPubMed
    1. Schorpp M.,
    2. Jäger R.,
    3. Schellander K.,
    4. Schenkel J.,
    5. Wagner E. F.,
    6. Weiher H.,
    7. Angel P.
    (1996) The human ubiquitin C promoter directs high ubiquitous expression of transgenes in mice. Nucleic Acids Res 24, 1787–1788
    OpenUrlFREE Full Text
    1. Schorpp-Kistner M.,
    2. Wang Z.-Q.,
    3. Angel P.,
    4. Wagner E. F.
    (1999) JunB is essential for mammalian placentation. EMBO J 18, 934–948
    OpenUrlAbstract/FREE Full Text
    1. Schreiber M.,
    2. Baumann B.,
    3. Cotten M.,
    4. Angel P.,
    5. Wagner E. F.
    (1995) Fos is an essential component of the mammalian UV response. EMBO J 14, 5338–5349
    OpenUrlPubMedWeb of Science
    1. Schreiber M.,
    2. Poirier C.,
    3. Franchi A.,
    4. Kurzbauer R.,
    5. Guenet J. L.,
    6. Carle G. F.,
    7. Wagner E. F.
    (1997) Structure and chromosomal assignment of the mouse fra-1 gene, and its exclusion as a candidate gene for oc (osteosclerosis). Oncogene 15, 1171–1178
    OpenUrlCrossRefPubMedWeb of Science
    1. Shalaby F.,
    2. Rossant J.,
    3. Yamaguchi T.P.,
    4. Gertsenstein M.,
    5. Wu X.-F.,
    6. Breitman M. L.,
    7. Schuh A. C.
    (1995) Failure of blood-island formation and vasculogenesis in Flk-1 deficient mice. Nature 376, 62–66
    OpenUrlCrossRefPubMedWeb of Science
    1. Stott D.,
    2. Kispert A.,
    3. Herrmann B. G.
    (1993) Rescue of the tail defect of Brachyury mice. Genes Dev 7, 197–203
    OpenUrlAbstract/FREE Full Text
    1. Suzuki T.,
    2. Okuno H.,
    3. Yoshida T.,
    4. Endo T.,
    5. Nishina H.,
    6. Iba H.
    (1991) Difference in transcriptional regulatory function between c-Fos and Fra-2. Nucleic Acids Res 19, 5537–5542
    OpenUrlAbstract/FREE Full Text
    1. Thepot D.,
    2. Weitzman J.B.,
    3. Barra J.,
    4. Segretain D.,
    5. Stinnakre M.-G.,
    6. Babinet C.,
    7. Yaniv M.
    (2000) Targeted disruption of the murine jun D gene results in multiple defects in male reproductive function. Development 127, 143–153
    OpenUrlAbstract
    1. Todaro G. J.,
    2. Green H.
    (1963) Quantitative studies of the growth of mouse embryo cells in culture and their development into established lines. J. Cell Biol 17, 299–313
    OpenUrlAbstract/FREE Full Text
    1. Vallone D.,
    2. Battista S.,
    3. Pierantoni G. M.,
    4. Fedele M.,
    5. Casalino L.,
    6. Santoro M.,
    7. Viglietto G.,
    8. Fusco A.,
    9. Verde P.
    (1997) Neoplastic transformation of rat thyroid cells requires the junB and fra-1 gene induction which is dependent on the HMGI-C gene product. EMBO J 16, 5310–5321
    OpenUrlCrossRefPubMedWeb of Science
    1. Wang Z.-Q.,
    2. Ovitt C.,
    3. Grigoriadis A. E.,
    4. Möhle Steinlein U.,
    5. Ruther U.,
    6. Wagner E. F.
    (1992) Bone and haematopoietic defects in mice lacking c-fos. Nature 360, 741–745
    OpenUrlCrossRefPubMedWeb of Science
    1. Wang Z.-Q.,
    2. Fung M. R.,
    3. Barlow D. P.,
    4. Wagner E. F.
    (1994) Regulation of embryonic growth and lysosomal targeting by the imprinted Igf2/Mpr gene. Nature 372, 464–467
    OpenUrlCrossRefPubMed
    1. Wang Z.-Q.,
    2. Kiefer F.,
    3. Urbanek P.,
    4. Wagner E. F.
    (1997) Generation of completely embryonic stem cell-derived mutant mice using tetraploid blastocyst injection. Mech Dev 62, 137–145
    OpenUrlCrossRefPubMedWeb of Science
    1. Welter J. F.,
    2. Crish J. F.,
    3. Agarwal C.,
    4. Eckert R. L.
    (1995) Fos-related antigen (Fra-1), junB, and junD activate human involucrin promoter transcription by binding to proximal and distal AP1 sites to mediate phorbol ester effects on promoter activity. J. Biol. Chem 270, 12614–12622
    OpenUrlAbstract/FREE Full Text
    1. Wisdom R.,
    2. Verma I. M.
    (1993) Proto-oncogene FosB: the amino terminus encodes a regulatory function required for transformation. Mol. Cell Biol 13, 2635–2643
    OpenUrlAbstract/FREE Full Text
    1. Yamamoto H.,
    2. Flannery M. L.,
    3. Kupriyanov S.,
    4. Pearce J.,
    5. McKercher S. R.,
    6. Henkel G. W.,
    7. Maki R. A.,
    8. Werb Z.,
    9. Oshima R. G.
    (1997) Defective trophoblast function in mice with a targeted mutation of Ets2. Genes Dev 12, 1315–1326
    OpenUrlAbstract/FREE Full Text
    1. Yang J. T.,
    2. Rayburn H.,
    3. Hynes R. O.
    (1995) Cell adhesion events mediated by alpha 4 integrins are essential in placental and cardiac development. Development 121, 549–560
    OpenUrlAbstract
    1. Yoshioka K.,
    2. Deng T.,
    3. Cavigelli M.,
    4. Karin M.
    (1995) Antitumor promotion by phenolic antioxidants: inhibition of AP-1 activity through induction of Fra expression. Proc. Natl. Acad. Sci. USA 92, 4972–4976
    OpenUrlAbstract/FREE Full Text
Previous ArticleNext Article
Back to top
Previous ArticleNext Article

This Issue

 Download PDF

Email

Thank you for your interest in spreading the word on Development.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Placental vascularisation requires the AP-1 component fra1
(Your Name) has sent you a message from Development
(Your Name) thought you would like to see the Development web site.
Share
JOURNAL ARTICLES
Placental vascularisation requires the AP-1 component fra1
M. Schreiber, Z.Q. Wang, W. Jochum, I. Fetka, C. Elliott, E.F. Wagner
Development 2000 127: 4937-4948;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Citation Tools
JOURNAL ARTICLES
Placental vascularisation requires the AP-1 component fra1
M. Schreiber, Z.Q. Wang, W. Jochum, I. Fetka, C. Elliott, E.F. Wagner
Development 2000 127: 4937-4948;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Alerts

Please log in to add an alert for this article.

Sign in to email alerts with your email address

Article navigation

  • Top
  • Article
  • Info & metrics
  • PDF

Related articles

Cited by...

More in this TOC section

  • Non-imprinted Igf2r expression decreases growth and rescues the Tme mutation in mice
  • The dermomyotome dorsomedial lip drives growth and morphogenesis of both the primary myotome and dermomyotome epithelium
  • REF-1, a protein with two bHLH domains, alters the pattern of cell fusion in C. elegans by regulating Hox protein activity
Show more JOURNAL ARTICLES

Similar articles

Other journals from The Company of Biologists

Journal of Cell Science

Journal of Experimental Biology

Disease Models & Mechanisms

Biology Open

Advertisement

The people behind the papers – George Britton and Aryeh Warmflash

George and Aryeh

First author George Britton and his supervisor Aryeh Warmflash discuss their new Development paper in which they apply advanced in vitro culturing techniques to investigate embryonic ectoderm patterning.


Travelling Fellowship – New imaging approach unveils a bigger picture

Highlights from Travelling Fellowship trips

Find out how Pamela Imperadore’s Travelling Fellowship grant from The Company of Biologists took her to Germany, where she used new imaging techniques to investigate the cellular machinery underlying octopus arm regeneration. Don’t miss the next application deadline for 2020 travel, coming up on 29 November. Where will your research take you?


Primer – Principles and applications of optogenetics in developmental biology

Schematic demonstrating the approaches to controlling protein activity using optogenetics.

Protein function can be controlled by light using optogenetic techniques. In their new Primer, Stefano De Renzis and his colleagues in Heidelberg provide an overview of the most commonly used optogenetic tools and their application in developmental biology.


preLights – Self-organised symmetry breaking in zebrafish reveals feedback from morphogenesis to pattern formation

Sundar Naganathan

preLighter Sundar Naganathan explains his selected preprint by Vikas Trivedi, Benjamin Steventon and their co-workers on pescoids, a new in vitro model system to study early zebrafish embryogenesis.


Spotlight – Can laboratory model systems instruct human limb regeneration?

An extract from a schematic demonstrating the possible pipeline for how discovery in lab model systems can influence applications for regenerative therapies.

One of the most challenging objectives of tissue regeneration research is regrowth of a lost or amputated limb. Here, Ben Cox, Maximina Yun and Kenneth Poss outline the research avenues yet to be explored to move closer to this capstone achievement.


Articles of interest in our sister journals

Tox4 modulates cell fate reprogramming

Lotte Vanheer, Juan Song, Natalie De Geest, Adrian Janiszewski, Irene Talon, Caterina Provenzano, Taeho Oh, Joel Chappell, Vincent Pasque
Journal of Cell Science

Drosophila melanogaster: a simple system for understanding complexity

Stephanie E. Mohr, Norbert Perrimon
Disease Models & Mechanisms

Articles

  • Accepted manuscripts
  • Issue in progress
  • Latest complete issue
  • Issue archive
  • Archive by article type
  • Special issues
  • Subject collections
  • Sign up for alerts

About us

  • About Development
  • About the Node
  • Editors and board
  • Editor biographies
  • Travelling Fellowships
  • Grants and funding
  • Journal Meetings
  • Workshops
  • The Company of Biologists

For authors

  • Submit a manuscript
  • Aims and scope
  • Presubmission enquiries
  • Article types
  • Manuscript preparation
  • Cover suggestions
  • Editorial process
  • Promoting your paper
  • Open Access
  • Biology Open transfer

Journal info

  • Journal policies
  • Rights and permissions
  • Media policies
  • Reviewer guide
  • Sign up for alerts

Contact

  • Contact Development
  • Subscriptions
  • Advertising
  • Feedback

 Twitter   YouTube   LinkedIn

© 2019   The Company of Biologists Ltd   Registered Charity 277992