Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Sign up for alerts
  • About us
    • About Development
    • About the Node
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contacts
    • Subscriptions
    • Feedback
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

User menu

  • Log in
  • Log out

Search

  • Advanced search
Development
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

supporting biologistsinspiring biology

Development

  • Log in
Advanced search

RSS  Twitter  Facebook  YouTube 

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Sign up for alerts
  • About us
    • About Development
    • About the Node
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contacts
    • Subscriptions
    • Feedback
JOURNAL ARTICLES
The role of Xenopus dickkopf1 in prechordal plate specification and neural patterning
O. Kazanskaya, A. Glinka, C. Niehrs
Development 2000 127: 4981-4992;
O. Kazanskaya
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
A. Glinka
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
C. Niehrs
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & metrics
  • PDF
Loading

Summary

Dickkopf1 (dkk1) encodes a secreted WNT inhibitor expressed in Spemann's organizer, which has been implicated in head induction in Xenopus. Here we have analyzed the role of dkk1 in endomesoderm specification and neural patterning by gain- and loss-of-function approaches. We find that dkk1, unlike other WNT inhibitors, is able to induce functional prechordal plate, which explains its ability to induce secondary heads with bilateral eyes. This may be due to differential WNT inhibition since dkk1, unlike frzb, inhibits Wnt3a signalling. Injection of inhibitory antiDkk1 antibodies reveals that dkk1 is not only sufficient but also required for prechordal plate formation but not for notochord formation. In the neural plate dkk1 is required for anteroposterior and dorsoventral patterning between mes- and telencephalon, where dkk1 promotes anterior and ventral fates. Both the requirement of anterior explants for dkk1 function and their ability to respond to dkk1 terminate at late gastrula stage. Xenopus embryos posteriorized with bFGF, BMP4 and Smads are rescued by dkk1. dkk1 does not interfere with the ability of bFGF to induce its immediate early target gene Xbra, indicating that its effect is indirect. In contrast, there is cross-talk between BMP and WNT signalling, since induction of BMP target genes is sensitive to WNT inhibitors until the early gastrula stage. Embryos treated with retinoic acid (RA) are not rescued by dkk1 and RA affects the central nervous system (CNS) more posterior than dkk1, suggesting that WNTs and retinoids may act to pattern anterior and posterior CNS, respectively, during gastrulation.

REFERENCES

    1. Adelmann H. B.
    (1936) The problem of cyclopia. Pt. I. Quart. Rev. Biol 11, 161–182
    OpenUrlCrossRef
    1. Adelmann H. B.
    (1936) The problem of cyclopia. Pt. II. Quart. Rev. Biol 11, 284–304
    OpenUrlCrossRef
    1. Bachiller D.,
    2. Klingensmith J.,
    3. Kemp C.,
    4. Belo J. A.,
    5. Anderson R. M.,
    6. May S. R.,
    7. McMahon J. A.,
    8. McMahon A. P.,
    9. Harland R. M.,
    10. Rossant J.,
    11. De Robertis E. M.
    (2000) The organizer factors Chordin and Noggin are required for mouse forebrain development. Nature 403, 658–661
    OpenUrlCrossRefPubMed
    1. Baker J. C.,
    2. Beddington R. S.,
    3. Harland R. M.
    (1999) Wnt signaling in Xenopus embryos inhibits bmp4 expression and activates neural development. Genes Dev 13, 3149–3159
    OpenUrlAbstract/FREE Full Text
    1. Barth K. A.,
    2. Kishimoto Y.,
    3. Rohr K. B.,
    4. Seydler C.,
    5. Schulte-Merker S.,
    6. Wilson S. W.
    (1999) Bmp activity establishes a gradient of positional information throughout the entire neural plate. Development 126, 4977–4987
    OpenUrlAbstract
    1. Blitz I. L.,
    2. Cho K. W. Y.
    (1995) Anterior neuroectoderm is progressively induced during gastrulation: the role of the Xenopus homeobox gene orthodenticle. Development 121, 993–1004
    OpenUrlAbstract
    1. Blumberg B.,
    2. Bolado J. J.,
    3. Moreno T. A.,
    4. Kintner C.,
    5. Evans R. M.,
    6. Papalopulu N.
    (1997) An essential role for retinoid signaling in anteroposterior neural patterning. Development 124, 373–379
    OpenUrlAbstract
    1. Bourguignon C.,
    2. Li J.,
    3. Papalopulu N.
    (1998) XBF-1, a winged helix transcription factor with dual activity, has a role in positioning neurogenesis in Xenopus competent ectoderm. Development 125, 4889–4900
    OpenUrlAbstract
    1. Bouwmeester T.,
    2. Kim S.-H.,
    3. Sasai Y.,
    4. Lu B.,
    5. De Robertis E. M.
    (1996) Cerberus is a head-inducing secreted factor expressed in the anterior endoderm of Spemann's organizer. Nature 382, 595–601
    OpenUrlCrossRefPubMedWeb of Science
    1. Bradley L.,
    2. Wainstock D.,
    3. Sive H.
    (1996) Positive and negative signals modulate formation of the Xenopus cement gland. Development 122, 2739–2750
    OpenUrlAbstract
    1. Bradley L. C.,
    2. Snape A.,
    3. Bhatt S.,
    4. Wilkinson D. G.
    (1993) The structure and expression of the Xenopus Krox-20 gene: conserved and divergent patterns of expression in rhombomeres and neural crest. Mech. Dev 40, 73–84
    OpenUrlCrossRefPubMedWeb of Science
    1. Candia A. F.,
    2. Watabe T.,
    3. Hawley H. B.,
    4. Onichtchouk D.,
    5. Zhang Y.,
    6. Derynck R.,
    7. Niehrs C.,
    8. Cho K. W. Y.
    (1997) Cellular interpretation of multiple TGF-beta signals: intracellular antagonism between activin/BVg1 and BMP-2/4 signaling mediated by Smads. Development 124, 4467–4480
    OpenUrlAbstract
    1. Chang C.,
    2. Hemmati-Brivanlou A.
    (1998) Neural crest induction by Xwnt7B in Xenopus. Dev. Biol 194, 129–134
    OpenUrlCrossRefPubMedWeb of Science
    1. Chen Y.,
    2. Hollemann T.,
    3. Pieler T.,
    4. Grunz H.
    (2000) Planar signalling is not sufficient to generate a specific anterior/posterior neural pattern in pseudoexogastrula explants from Xenopus and Triturus. Mech. Dev 90, 53–63
    OpenUrlCrossRefPubMed
    1. Chiang C.,
    2. Litingtung Y.,
    3. Lee E.,
    4. Young K. E.,
    5. Corden J. L.,
    6. Westphal H.,
    7. Beachy P. A.
    (1996) Cyclopia and defective axial patterning in mice lacking Sonic hedgehog gene function. Nature 383, 407–413
    OpenUrlCrossRefPubMedWeb of Science
    1. Cho K. W.,
    2. Blumberg B.,
    3. Steinbeisser H.,
    4. De Robertis E. M.
    (1991) Molecular nature of Spemann's organizer: the role of the Xenopus homeobox gene goosecoid. Cell 67, 1111–1120
    OpenUrlCrossRefPubMedWeb of Science
    1. Christian J. L.,
    2. Moon R. T.
    (1993) Interactions between Xwnt-8 and Spemann organizer signaling pathways generate dorsoventral pattern in the embryonic mesoderm of Xenopus. Genes Dev 7, 13–28
    OpenUrlAbstract/FREE Full Text
    1. Dale L.,
    2. Howes G.,
    3. Price B. M.,
    4. Smith J. C.
    (1992) Bone morphogenetic protein 4: a ventralizing factor in early Xenopus development. Development 115, 573–585
    OpenUrlAbstract
    1. de Souza F. S. J.,
    2. Gawantka V.,
    3. Gomez A. P.,
    4. Delius H.,
    5. Ang S.-L.,
    6. Niehrs C.
    (1999) The zinc finger gene Xblimp1 controls anterior endomesodermal cell fate in Spemann's organizer. EMBO J 18, 6062–6072
    OpenUrlAbstract/FREE Full Text
    1. Dorsky R. I.,
    2. Moon R. T.,
    3. Raible D. W.
    (1998) Control of neural crest cell fate by the Wnt signalling pathway. Nature 396, 370–373
    OpenUrlCrossRefPubMedWeb of Science
    1. Dupe V.,
    2. Ghyselinck N. B.,
    3. Wendling O.,
    4. Chambon P.,
    5. Mark M.
    (1999) Key roles of retinoic acid receptors alpha and beta in the patterning of the caudal hindbrain, pharyngeal arches and otocyst in the mouse. Development 126, 5051–5059
    OpenUrlAbstract
    1. Durston A. J.,
    2. Timmermans J. P.,
    3. Hage W. J.,
    4. Hendriks H. F.,
    5. de Vries N. J.,
    6. Heideveld M.,
    7. Nieuwkoop P. D.
    (1989) Retinoic acid causes an anteroposterior transformation in the developing central nervous system. Nature 340, 140–144
    OpenUrlCrossRefPubMed
    1. Ekker S. C.,
    2. McGrew L. L.,
    3. Lai C. J.,
    4. Lee J. J.,
    5. von K. D.,
    6. Moon R. T.,
    7. Beachy P. A.
    (1995) Distinct expression and shared activities ofmembers of the hedgehog gene family of Xenopus laevis. Development 121, 2337–2347
    OpenUrlAbstract
    1. Ekker S. C.,
    2. Ungar A. R.,
    3. Greenstein P.,
    4. von K. D.,
    5. Porter J. A.,
    6. Moon R. T.,
    7. Beachy P. A.
    (1995) Patterning activities of vertebrate hedgehog proteins in the developing eye and brain. Curr. Biol 5, 944–955
    OpenUrlCrossRefPubMedWeb of Science
    1. Fedi P.,
    2. Bafico A.,
    3. Nieto Soria A.,
    4. Burgess W. H.,
    5. Miki T.,
    6. Bottaro D. P.,
    7. Kraus M. H.,
    8. Aaronson S. A.
    (1999) Isolation and biochemical characterization of the human Dkk-1 homologue, a novel inhibitor of mammalian Wnt signaling. J. Biol. Chem 274, 19465–19472
    OpenUrlAbstract/FREE Full Text
    1. Foley A. C.,
    2. Storey K. G.,
    3. Stern C. D.
    (1997) The prechordal region lacks neural inducing ability, but can confer anterior character to more posterior neuroepithelium. Development 124, 298329–96
    OpenUrl
    1. Franco P. G.,
    2. Paganelli A. R.,
    3. Lopez S. L.,
    4. Carrasco A. E.
    (1999) Functional association of retinoic acid and hedgehog signaling in Xenopus primary neurogenesis. Development 126, 4257–4265
    OpenUrlAbstract
    1. Fredieu J. R.,
    2. Cui Y.,
    3. Maier D.,
    4. Danilchik M. V.,
    5. Christian J. L.
    (1997) Xwnt-8 and lithium can act upon either dorsal mesodermal or neuroectodermal cells to cause a loss of forebrain in Xenopus embryos. Dev. Biol 186, 100–114
    OpenUrlCrossRefPubMed
    1. Gawantka V.,
    2. Delius H.,
    3. Hirschfeld K.,
    4. Blumenstock C.,
    5. Niehrs C.
    (1995) Antagonizing the Spemann organizer: role of the homeobox gene Xvent-1. EMBO J 14, 6268–6279
    OpenUrlPubMedWeb of Science
    1. Gawantka V.,
    2. Pollet N.,
    3. Delius H.,
    4. Pfister R.,
    5. Vingron M.,
    6. Nitsch R.,
    7. Blumenstock C.,
    8. Niehrs C.
    (1998) Gene expression screening in Xenopus identifies molecular pathways, predicts gene function and provides a global view of embryonic patterning. Mech. Dev 77, 95–141
    OpenUrlCrossRefPubMedWeb of Science
    1. Gilbert S. F.,
    2. Saxen L.
    (1993) Spemann's organizer: models and molecules. Mech. Dev 41, 73–89
    OpenUrlCrossRefPubMedWeb of Science
    1. Glinka A.,
    2. Delius H.,
    3. Blumenstock C.,
    4. Niehrs C.
    (1996) Combinatorial signalling by Xwnt-11 and Xnr3 in the organizer epithelium. Mech. Dev 60, 221–231
    OpenUrlCrossRefPubMedWeb of Science
    1. Glinka A.,
    2. Wu W.,
    3. Delius H.,
    4. Monaghan P. A.,
    5. Blumenstock C.,
    6. Niehrs C.
    (1998) Dickkopf-1 is a member of a new family of secreted proteins and functions in head induction. Nature 391, 357–362
    OpenUrlCrossRefPubMedWeb of Science
    1. Glinka A.,
    2. Wu W.,
    3. Onichtchouk D.,
    4. Blumenstock C.,
    5. Niehrs C.
    (1997) Head induction by simultaneous repression of Bmp and wnt signalling in Xenopus. Nature 389, 517–519
    OpenUrlCrossRefPubMed
    1. Gont L. K.,
    2. Steinbeisser H.,
    3. Blumberg B.,
    4. De Robertis E. M.
    (1993) Tail formation as a continuation of gastrulation: the multiple cell populations of the Xenopus tailbud derive from the late blastopore lip. Development 119, 991–1004
    OpenUrlAbstract
    1. Grinblat Y.,
    2. Gamse J.,
    3. Patel M.,
    4. Sive H.
    (1998) Determination of the zebrafish forebrain: induction and patterning. Development 125, 4403–4416
    OpenUrlAbstract
    1. Harland R. M.
    (1991) In situ hybridization: an improved whole-mount method for Xenopus embryos. Methods Cell Biol 36, 685–695
    OpenUrlCrossRefPubMedWeb of Science
    1. Harland R. M.,
    2. Gerhart J.
    (1997) Formation and function of Spemann's organizer. Annu. Rev. Dev. Biol 13, 611–667
    OpenUrlCrossRefPubMedWeb of Science
    1. Hashimoto H.,
    2. Itoh M.,
    3. Yamanaka Y.,
    4. Yamashita S.,
    5. Shimizu T.,
    6. Solnica-Krezel L.,
    7. Hibi M.,
    8. Hirano T.
    (2000) Zebrafish Dkk1 Functions in Forebrain Specification and Axial Mesendoderm Formation. Dev. Biol 217, 138–152
    OpenUrlCrossRefPubMed
    1. Hata A.,
    2. Seoane J.,
    3. Lagna G.,
    4. Montalvo E.,
    5. Hemmati-Brivanlou A.,
    6. Massague J.
    (2000) OAZ uses distinct DNA-and protein-binding zinc fingers in separate BMP-Smad and Olf signaling pathways. Cell 100, 229–240
    OpenUrlCrossRefPubMedWeb of Science
    1. Hemmati-Brivanlou A.,
    2. de l. T. J.,
    3. Holt C.,
    4. Harland R. M.
    (1991) Cephalic expression and molecular characterization of Xenopus En-2. Development 111, 715–724
    OpenUrlAbstract
    1. Hemmati-Brivanlou A.,
    2. Kelly O. G.,
    3. Melton D. A.
    (1994) Follistatin, an antagonist of activin, is expressed in the Spemann organizer and displays direct neuralizing activity. Cell 77, 283–295
    OpenUrlCrossRefPubMedWeb of Science
    1. Henningfeld K. A.,
    2. Rastegar S.,
    3. Adler G.,
    4. Knochel W.
    (2000) Smad1 and Smad4 are Components of the BMP-4 Induced Transcription Complex of the Xvent-2B Promoter. J. Biol. Chem 275, 21827–21835
    OpenUrlAbstract/FREE Full Text
    1. Hensey C.,
    2. Gautier J.
    (1998) Programmed cell death during Xenopus development: a spatio-temporal analysis. Dev. Biol 203, 36–48
    OpenUrlCrossRefPubMedWeb of Science
    1. Hoppler S.,
    2. Brown J. D.,
    3. Moon R. T.
    (1996) Expression of a dominant-negative wnt blocks induction of MyoD in Xenopus embryos. Genes Dev 10, 2805–2817
    OpenUrlAbstract/FREE Full Text
    1. Hsieh J. C.,
    2. Kodjabachian L.,
    3. Rebbert M. L.,
    4. Rattner A.,
    5. Smallwood P. M.,
    6. Samos C. H.,
    7. Nusse R.,
    8. Dawid I. B.,
    9. Nathans J.
    (1999) Anew secreted protein that binds to Wnt proteins and inhibits their activities. Nature 398, 431–436
    OpenUrlCrossRefPubMedWeb of Science
    1. Hsu D. R.,
    2. Economides A. N.,
    3. Wang X.,
    4. Eimon P. M.,
    5. Harland R. M.
    (1998) The Xenopus dorsalizing factor gremlin identifies a novel family of secreted proteins that antagonize BMP activities. Mol. Cell 1, 673–683
    OpenUrl
    1. Iemura S.-I.,
    2. Yamamoto T.,
    3. Takagi C.,
    4. Uchiyama H.,
    5. Natsume T.,
    6. Shimasaki S.,
    7. Sugino H.,
    8. Ueno N.
    (1998) Direct binding of follistatin to a complex of bone morphogenetic protein and its receptor inhibits ventral and epidermal cell fates in early Xenopus embryos. Proc. Natl. Acad. Sci. USA 95, 9337–9342
    OpenUrlAbstract/FREE Full Text
    1. Itoh K.,
    2. Sokol S. Y.
    (1999) Axis determination by inhibition of Wnt signaling in Xenopus. Genes Dev 13, 2328–2336
    OpenUrlAbstract/FREE Full Text
    1. Jones C. M.,
    2. Lyons K. M.,
    3. Lapan P. M.,
    4. Wright C. V.,
    5. Hogan B. L.
    (1992) DVR-4 (bone morphogenetic protein-4) as a posterior-ventralizing factor in Xenopus mesoderm induction. Development 115, 639–647
    OpenUrlAbstract
    1. Knecht A. K.,
    2. Good P. J.,
    3. Dawid I. B.,
    4. Harland R. M.
    (1995) Dorsal-ventral patterning and differentiation of noggin-induced neural tissue in the absence of mesoderm. Development 121, 1927–1235
    OpenUrlAbstract
    1. Kroll K. L.,
    2. Amaya E.
    (1996) Transgenic Xenopus embryos from sperm nuclear transplantations reveal FGF signaling requirements during gastrulation. Development 122, 3173–3183
    OpenUrlAbstract
    1. Krupnik V. E.,
    2. Sharp J. D.,
    3. Jiang C.,
    4. Robison K.,
    5. Chickering T. W.,
    6. Amaravadi L.,
    7. Brown D. E.,
    8. Guyot D.,
    9. Mays G.,
    10. Leiby K.,
    11. Chang B.,
    12. Duong T.,
    13. Goodearl A. D.,
    14. Gearing D. P.,
    15. Sokol S. Y.,
    16. McCarthy S. A.
    (1999) Functional and structural diversity of the human Dickkopf gene family. Gene 238, 301–313
    OpenUrlCrossRefPubMedWeb of Science
    1. Kuhl M.,
    2. Sheldahl L. C.,
    3. Malbon C. C.,
    4. Moon R. T.
    (2000) Ca2+/calmodulin-dependent protein kinase II is stimulated by Wnt and Frizzled homologs and promotes ventral cell fates in Xenopus. J. Biol. Chem 275, 12701–12711
    OpenUrlAbstract/FREE Full Text
    1. LaBonne C.,
    2. Bronner-Fraser M.
    (1998) Neural crest induction in Xenopus: evidence for a two-signal model. Development 125, 2403–2414
    OpenUrlAbstract
    1. Ladher R.,
    2. Mohun T. J.,
    3. Smith J. C.,
    4. Snape A. M.
    (1996) Xom: a Xenopus homeobox gene that mediates the early effects of BMP-4. Development 122, 2385–2394
    OpenUrlAbstract
    1. Leyns L.,
    2. Bouwmeester T.,
    3. Kim S.-H.,
    4. Piccolo S.,
    5. De Robertis E. M.
    (1997) Frzb-1 is a secreted antagonist of wnt-signals expressed in the Spemann organizer. Cell 88, 747–756
    OpenUrlCrossRefPubMedWeb of Science
    1. Li H.,
    2. Tierney C.,
    3. Wen L.,
    4. Wu J. Y.,
    5. Rao Y.
    (1997) A single morphogenetic field gives rise to two retina primordia under the influence of the prechordal plate. Development 124, 603–615
    OpenUrlAbstract
    1. Macdonald R.,
    2. Barth K. A.,
    3. Xu Q.,
    4. Holder N.,
    5. Mikkola I.,
    6. Wilson S. W.
    (1995) Midline signalling is required for Pax gene regulation and patterning of the eyes. Development 121, 3267–3278
    OpenUrlAbstract
    1. Mangold O.
    (1933) Über die Induktionsfähigkeit der verschiedenen Bezirke der Neurula von Urodelen. Naturwissenschaften 21, 761–766
    OpenUrlCrossRefWeb of Science
    1. Marom K.,
    2. Fainsod A.,
    3. Steinbeisser H.
    (1999) Patterning of the mesoderm involves several threshold responses to BMP-4 and xwnt-8. Mech. Dev 87, 33–44
    OpenUrlCrossRefPubMed
    1. McGrew L. L.,
    2. Hoppler S.,
    3. Moon R. T.
    (1997) Wnt and FGF pathways cooperatively pattern anteroposterior neural ectoderm in Xenopus. Mech. Dev 69, 105–114
    OpenUrlCrossRefPubMedWeb of Science
    1. Meersman G.,
    2. Verschueren K.,
    3. Nelles L.,
    4. Blumenstock C.,
    5. Kraft H.,
    6. Wuytens G.,
    7. Remacle J.,
    8. Kozak C. A.,
    9. Tylzanowsky P.,
    10. Niehrs C.,
    11. Huylebroeck D.
    (1997) The C-terminal domain of Mad-like signal transducers is sufficient for biological activity in vivo and transcriptional activation. Mech. Dev 61, 127–140
    OpenUrlCrossRefPubMed
    1. Moon R. T.,
    2. Brown J. D.,
    3. Yang-Snyder J. A.,
    4. Miller J. R.
    (1997) Structurally related receptors and antagonists compete for secreted wnt ligands. Cell 88, 725–728
    OpenUrlCrossRefPubMedWeb of Science
    1. Newman C. S.,
    2. Chia F.,
    3. Krieg P. A.
    (1997) The XHex homeobox gene is expressed during development of the vascular endothelium: overexpression leads to an increase in vascular endothelial cell number. Mech. Dev 66, 83–93
    OpenUrlCrossRefPubMedWeb of Science
    1. Niederreither K.,
    2. Subbarayan V.,
    3. Dolle P.,
    4. Chambon P.
    (1999) Embryonic retinoic acid synthesis is essential for early mouse post-implantation development. Nat. Genet 21, 444–448
    OpenUrlCrossRefPubMedWeb of Science
    1. Niehrs C.
    (1999) Head in the Wnt- the molecular nature of Spemann's head organizer. Trends Genet 15, 314–319
    OpenUrlCrossRefPubMedWeb of Science
    1. Nieuwkoop P. D.
    (1997) Short historical survey of pattern formation in the endo-mesoderm and the neural anlage in the vertebrates: the role of vertical and planar inductive actions. Cell. Mol. Life Sci 53, 305–318
    OpenUrlCrossRefPubMed
    1. Nishita M.,
    2. Hashimoto M. K.,
    3. Ogata S.,
    4. Laurent M. N.,
    5. Ueno N.,
    6. Shibuya H.,
    7. Cho K. W.
    (2000) Interaction between Wnt and TGF-beta signalling pathways during formation of Spemann's organizer. Nature 403, 781–785
    OpenUrlCrossRefPubMed
    1. Onichtchouk D.,
    2. Gawantka V.,
    3. Dosch R.,
    4. Delius H.,
    5. Hirschfeld K.,
    6. Blumenstock C.,
    7. Niehrs C.
    (1996) The Xvent-2 homeobox gene is part of the BMP-4 signaling pathway controling dorsoventral patterning of Xenopus mesoderm. Development 122, 3045–3053
    OpenUrlAbstract
    1. Pannese M.,
    2. Polo C.,
    3. Andreazzoli M.,
    4. Vignali R.,
    5. Kablar B.,
    6. Barsacchi G.,
    7. Boncinelli E.
    (1995) The Xenopus homologue of Otx2 is a maternal homeobox gene that demarcates and specifies anterior body regions. Development 121, 707–720
    OpenUrlAbstract
    1. Pearce J. J. H.,
    2. Penny G.,
    3. Rossant J.
    (1999) A mouse cerberus/dan-related gene family. Dev. Biol 209, 98–100
    OpenUrlCrossRefPubMedWeb of Science
    1. Pera E. M.,
    2. Kessel M.
    (1997) Patterning of the chick forebrain anlage by the prechordal plate. Development 124, 41534162–.
    OpenUrl
    1. Peng H. B.
    (1991) Xenopus laevis: Practical uses in cell and molecular biology. Solutions and protocols. Methods Cell. Biol 36, 659–.
    OpenUrl
    1. Piccolo S.,
    2. Agius E.,
    3. Leyns L.,
    4. Bhattacharyya S.,
    5. Grunz H.,
    6. Bouwmeester T.,
    7. De Robertis E. M.
    (1999) The head inducer Cerberus is a multifunctional antagonist of Nodal, BMP and Wnt signals. Nature 397, 707–710
    OpenUrlCrossRefPubMed
    1. Piccolo S.,
    2. Sasai Y.,
    3. Lu B.,
    4. De Robertis E. M.
    (1996) Dorsoventral patterning in Xenopus: inhibition of ventral signals by direct binding of chordin to BMP-4. Cell 86, 589–598
    OpenUrlCrossRefPubMedWeb of Science
    1. Poznanski A.,
    2. Keller R.
    (1997) The role of planar and early vertical signaling in patterning the expression of Hoxb-1 in Xenopus. Dev. Biol 184, 351–366
    OpenUrlCrossRefPubMed
    1. Rastegar S.,
    2. Friedle H.,
    3. Frommer G.,
    4. Knöchel W.
    (1999) Transcriptional regulation of Xvent homeobox genes. Mech. Dev 81, 139–149
    OpenUrlCrossRefPubMedWeb of Science
    1. Roelink H.,
    2. Nusse R.
    (1991) Expression of two members of the Wnt family during mouse development—restricted temporal and spatial patterns in the developing neural tube. Genes Dev 5, 381–388
    OpenUrlAbstract/FREE Full Text
    1. Roelink H.,
    2. Augsburger A.,
    3. Heemskerk J.,
    4. Korzh V.,
    5. Norlin S.,
    6. RuiziAltaba A.,
    7. Tanabe Y.,
    8. Placzek M.,
    9. Edlund T.,
    10. Jessell T. M.,
    11. et al.
    (1994) Floor plate and motor neuron induction by vhh-1, a vertebrate homolog of hedgehog expressed by the notochord. Cell 76, 761–775
    OpenUrlCrossRefPubMedWeb of Science
    1. Ruiz i Altaba A.,
    2. Jessell T. M.
    (1991) Retinoic acid modifies mesodermal patterning in early Xenopus embryos. Genes Dev 5, 175–187
    OpenUrlAbstract/FREE Full Text
    1. Ruiz i Altaba A.,
    2. Jessell T. M.
    (1991) Retinoic acid modifies the pattern of cell differentiation in the central nervous system of neurula stage Xenopus embryos. Development 112, 945–958
    OpenUrlAbstract
    1. Ruiz i Altaba A.
    (1993) Induction and axial patterning of the neural plate: planar and vertical signals. J. Neurobiol 24, 1276–1304
    OpenUrlCrossRefPubMedWeb of Science
    1. Ruiz i Altaba A.
    (1998) Neural patterning. Deconstructing the organizer. Nature 391, 748–749
    OpenUrlCrossRefPubMed
    1. Saint-Jeannet J.-P.,
    2. He X.,
    3. Varmus H.,
    4. Dawid I. B.
    (1997) Regulation of dorsal fate in the neuraxis by Wnt-1 and Wnt-3a. Proc. Natl. Acad. Sci. USA 94, 13713–13718
    OpenUrlAbstract/FREE Full Text
    1. Salic A. N.,
    2. Kroll K. L.,
    3. Evans L. M.,
    4. Kirschner M. W.
    (1997) Sizzled: a secreted Xwnt8 antagonist expressed in the ventral marginal zone of Xenopus embryos. Development 124, 4739–4748
    OpenUrlAbstract
    1. Sampath K.,
    2. Rubinstein A. L.,
    3. Cheng A. M.,
    4. Liang J. O.,
    5. Fekany K.,
    6. Solnica K. L.,
    7. Korzh V.,
    8. Halpern M. E.,
    9. Wright C. V.
    (1998) Induction of the zebrafish ventral brain and floorplate requires cyclops/nodal signalling. Nature 395, 185–189
    OpenUrlCrossRefPubMedWeb of Science
    1. Sasai Y.,
    2. De Robertis E. M.
    (1997) Ectodermal patterning in vertebrate embryos. Dev. Biol 182, 5–20
    OpenUrlCrossRefPubMedWeb of Science
    1. Schier A. F.,
    2. Neuhauss S. C.,
    3. Harvey M.,
    4. Malicki J.,
    5. Solnica K. L.,
    6. Stainier D. Y.,
    7. Zwartkruis F.,
    8. Abdelilah S.,
    9. Stemple D. L.,
    10. Rangini Z.,
    11. Yang H.,
    12. Driever W.
    (1996) Mutations affecting the development of the embryonic zebrafish brain. Development 123, 165–178
    OpenUrlAbstract/FREE Full Text
    1. Schier A. F.,
    2. Neuhauss S. C.,
    3. Helde K. A.,
    4. Talbot W. S.,
    5. Driever W.
    (1997) The one-eyed pinhead gene functions in mesoderm and endoderm formation in zebrafish and interacts with no tail. Development 124, 327–342
    OpenUrlAbstract
    1. Schneider V. A.,
    2. Mercola M.
    (1999) Spatially distinct head and heart inducers within the Xenopus organizer region. Curr. Biol 9, 800–809
    OpenUrlCrossRefPubMed
    1. Sharpe C.,
    2. Goldstone K.
    (2000) The control of Xenopus embryonic primary neurogenesis is mediated by retinoid signalling in the neurectoderm. Mech. Dev 91, 69–80
    OpenUrlCrossRefPubMed
    1. Sharpe C. R.
    (1991) Retinoic acid can mimic endogenous signals involved in transformation of the Xenopus nervous system. Neuron 7, 239–247
    OpenUrlCrossRefPubMedWeb of Science
    1. Sive H. L.,
    2. Draper B. W.,
    3. Harland R. M.,
    4. Weintraub H.
    (1990) Identification of a retinoic acid-sensitive period during primary axis formation in Xenopus laevis. Genes Dev 4, 932–942
    OpenUrlAbstract/FREE Full Text
    1. Slack J.
    (1994) Role of fibroblast growth factors as inducing agents in early embryonic development. Mol. Reprod. Dev 39, 118–124
    OpenUrlCrossRefPubMed
    1. Smith J. C.,
    2. Price B. M.,
    3. Green J. B.,
    4. Weigel D.,
    5. Herrmann B. G.
    (1991) Expression of a Xenopus homolog of Brachyury (T) is an immediate-early response to mesoderm induction. Cell 67, 79–87
    OpenUrlCrossRefPubMedWeb of Science
    1. Smith W. C.,
    2. Harland R. M.
    (1991) Injected Xwnt-8 RNA acts early in Xenopus embryos to promote formation of a vegetal dorsalizing center. Cell 67, 753–765
    OpenUrlCrossRefPubMedWeb of Science
    1. Suzuki A.,
    2. Chang C.,
    3. Yingling J. M.,
    4. Wang X. F.,
    5. Hemmati-Brivanlou A.
    (1997) Smad5 induces ventral fates in Xenopus embryo. Dev. Biol 184, 402–405
    OpenUrlCrossRefPubMedWeb of Science
    1. Suzuki A.,
    2. Thies R. S.,
    3. Yamaji N.,
    4. Song J. J.,
    5. Wozney J. M.,
    6. Murakami K.,
    7. Ueno N.
    (1994) A truncated bone morphogenetic protein receptor affects dorsal-ventral patterning in the early Xenopus embryo. Proc. Natl. Acad. Sci. USA 91, 10255–10259
    OpenUrlAbstract/FREE Full Text
    1. Takada S.,
    2. Stark K. L. M. J. S.,
    3. Vassileva G.,
    4. McMahon J. A.
    (1994) Wnt-3a regulates somite and tailbud formation in the mouse embryo. Genes Dev 8, 174–189
    OpenUrlAbstract/FREE Full Text
    1. Thisse B.,
    2. Wright C. V.,
    3. Thisse C.
    (2000) Activin-and Nodal-related factors control antero-posterior patterning of the zebrafish embryo. Nature 403, 425–428
    OpenUrlCrossRefPubMedWeb of Science
    1. Wang S.,
    2. Krinks M.,
    3. Lin K.,
    4. Luyten F. P.,
    5. Moos M.
    (1997) Frzb, a secreted protein expressed in the Spemann organizer, binds and inhibits Wnt-8. Cell 88, 757–766
    OpenUrlCrossRefPubMedWeb of Science
    1. Wang S.,
    2. Krinks M.,
    3. Moos M. J.
    (1997) Frzb-1, an antagonist of Wnt-1 and Wnt-8, does not block signaling by Wnts3A, 5A, or11. Biochem. Biophys. Res. Commun 236, 502–504
    OpenUrlCrossRefPubMedWeb of Science
    1. Wilson P. A.,
    2. Lagna G.,
    3. Suzuki A.,
    4. Hemmati-Brivanlou A.
    (1997) Concentration-dependent patterning of the Xenopus ectoderm by BMP4 and its signal transducer Smad1. Development 124, 3177–3184
    OpenUrlAbstract
    1. Wolda S. L.,
    2. Moody C. J.,
    3. Moon R. T.
    (1993) Overlapping expression of Xwnt-3A and Xwnt-1 in neural tissue of Xenopus laevis embryos. Dev. Biol 155, 46–57
    OpenUrlCrossRefPubMedWeb of Science
    1. Zaraisky A. G.,
    2. Lukyanov S. A.,
    3. Vasiliev O. L.,
    4. Smirnov Y. V.,
    5. Belyavsky A. V.,
    6. Kazanskaya O. V.
    (1992) A novel homeobox gene expressed in the anterior neural plate of the Xenopus embryo. Dev. Biol 152, 373–382
    OpenUrlCrossRefPubMed
    1. Zimmerman L. B.,
    2. De Jesús-Escobar J.-E.,
    3. Harland R. M.
    (1996) The Spemann organizer signal noggin binds and inactivates bone morphogenetic protein-4. Cell 86, 599–606
    OpenUrlCrossRefPubMedWeb of Science
    1. Zoltewicz J. S.,
    2. Gerhart J. C.
    (1997) The Spemann organizer of Xenopus is patterned along its anteroposterior axis at the earliest gastrula stage. Dev. Biol 192, 482–491
    OpenUrlCrossRefPubMedWeb of Science
Previous ArticleNext Article
Back to top
Previous ArticleNext Article

This Issue

 Download PDF

Email

Thank you for your interest in spreading the word on Development.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
The role of Xenopus dickkopf1 in prechordal plate specification and neural patterning
(Your Name) has sent you a message from Development
(Your Name) thought you would like to see the Development web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
JOURNAL ARTICLES
The role of Xenopus dickkopf1 in prechordal plate specification and neural patterning
O. Kazanskaya, A. Glinka, C. Niehrs
Development 2000 127: 4981-4992;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Citation Tools
JOURNAL ARTICLES
The role of Xenopus dickkopf1 in prechordal plate specification and neural patterning
O. Kazanskaya, A. Glinka, C. Niehrs
Development 2000 127: 4981-4992;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Alerts

Please log in to add an alert for this article.

Sign in to email alerts with your email address

Article navigation

  • Top
  • Article
  • Info & metrics
  • PDF

Related articles

Cited by...

More in this TOC section

  • A BAC transgenic analysis of the Mrf4/Myf5 locus reveals interdigitated elements that control activation and maintenance of gene expression during muscle development
  • Visualization and functional characterization of the developing murine cardiac conduction system
  • Activation and repression by the C-terminal domain of Dorsal
Show more JOURNAL ARTICLES

Similar articles

Other journals from The Company of Biologists

Journal of Cell Science

Journal of Experimental Biology

Disease Models & Mechanisms

Biology Open

Advertisement

An interview with Swathi Arur

Swathi Arur joined the team at Development as an Academic Editor in 2020. Her lab uses multidisciplinary approaches to understand female germline development and fertility. We met with her over Zoom to hear more about her life, her career and her love for C. elegans.


Jim Wells and Hanna Mikkola join our team of Editors

We are pleased to welcome James (Jim) Wells and Hanna Mikkola to our team of Editors. Jim joins us a new Academic Editor, taking over from Gordan Keller, and Hanna joins our team of Associate Editors. Find out more about their research interests and areas of expertise.


New funding scheme supports sustainable events

As part of our Sustainable Conferencing Initiative, we are pleased to announce funding for organisers that seek to reduce the environmental footprint of their event. The next deadline to apply for a Scientific Meeting grant is 26 March 2021.


Read & Publish participation continues to grow

“I’d heard of Read & Publish deals and knew that many universities, including mine, had signed up to them but I had not previously understood the benefits that these deals bring to authors who work at those universities.”

Professor Sally Lowell (University of Edinburgh) shares her experience of publishing Open Access as part of our growing Read & Publish initiative. We now have over 150 institutions in 15 countries and four library consortia taking part – find out more and view our full list of participating institutions.


Upcoming special issues

Imaging Development, Stem Cells and Regeneration
Submission deadline: 30 March 2021
Publication: mid-2021

The Immune System in Development and Regeneration
Guest editors: Florent Ginhoux and Paul Martin
Submission deadline: 1 September 2021
Publication: Spring 2022

Both special issues welcome Review articles as well as Research articles, and will be widely promoted online and at key global conferences.


Development presents...

Our successful webinar series continues into 2021, with early-career researchers presenting their papers and a chance to virtually network with the developmental biology community afterwards. Here, Brandon Carpenter talks about how inherited histone methylation defines the germline versus soma decision in C. elegans. 

Sign up to join our next session:

10 March
Time: TBC
Chaired by: Thomas Lecuit

Articles

  • Accepted manuscripts
  • Issue in progress
  • Latest complete issue
  • Issue archive
  • Archive by article type
  • Special issues
  • Subject collections
  • Sign up for alerts

About us

  • About Development
  • About the Node
  • Editors and board
  • Editor biographies
  • Travelling Fellowships
  • Grants and funding
  • Journal Meetings
  • Workshops
  • The Company of Biologists

For authors

  • Submit a manuscript
  • Aims and scope
  • Presubmission enquiries
  • Article types
  • Manuscript preparation
  • Cover suggestions
  • Editorial process
  • Promoting your paper
  • Open Access
  • Biology Open transfer

Journal info

  • Journal policies
  • Rights and permissions
  • Media policies
  • Reviewer guide
  • Sign up for alerts

Contact

  • Contact Development
  • Subscriptions
  • Advertising
  • Feedback

 Twitter   YouTube   LinkedIn

© 2021   The Company of Biologists Ltd   Registered Charity 277992