Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Sign up for alerts
  • About us
    • About Development
    • About the Node
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contacts
    • Subscriptions
    • Advertising
    • Feedback
    • For library administrators
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

User menu

  • Log in
  • Log out

Search

  • Advanced search
Development
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

supporting biologistsinspiring biology

Development

  • Log in
Advanced search

RSS  Twitter  Facebook  YouTube 

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Sign up for alerts
  • About us
    • About Development
    • About the Node
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contacts
    • Subscriptions
    • Advertising
    • Feedback
    • For library administrators
JOURNAL ARTICLES
BMP and FGF regulate the development of EGF-responsive neural progenitor cells
L. Lillien, H. Raphael
Development 2000 127: 4993-5005;
L. Lillien
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
H. Raphael
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & metrics
  • PDF
Loading

Summary

Temporal changes in progenitor cell responses to extrinsic signals play an important role in development, but little is known about the mechanisms that determine how these changes occur. In the rodent CNS, expression of epidermal growth factor receptors (EGFRs) increases during embryonic development, conferring mitotic responsiveness to EGF among multipotent stem cells. Here we show that cell-cell signaling controls this change. Whereas EGF-responsive stem cells develop on schedule in explant and aggregate cultures of embryonic cortex, co-culture with younger cortical cells delays their development. Exogenous BMP4 mimics the effect of younger cells, reversibly inhibiting changes in EGFR expression and responsiveness. Moreover, blocking endogenous BMP receptors in progenitors with a virus transducing dnBMPR1B accelerates changes in EGFR signaling. This involves a non-cell-autonomous mechanism, suggesting that BMP negatively regulates signal(s) that promote the development of EGF-responsive stem cells. FGF2 is a good candidate for such a signal, as we find that it antagonizes the inhibitory effects of younger cortical cells and exogenous BMP4. These findings suggest that a balance between antagonistic extrinsic signals regulates temporal changes in an intrinsic property of neural progenitor cells.

REFERENCES

    1. Angulo Y Gonzales A. W.
    (1932) The prenatal growth of the albino rat. Anat. Rec 52, 117–138
    OpenUrlCrossRef
    1. Bohner A. P.,
    2. Akers R. M.,
    3. McConnell S. K.
    (1997) Induction of deep layer cortical neurons in vitro. Development 124, 915–936
    OpenUrlAbstract
    1. Bottenstein J. E.,
    2. Sato G. H.
    (1979) Growth of a rat neuroblastoma cell line in serum-free supplemented medium. Proc. Natl. Acad. Sci. USA 76, 514–517
    OpenUrlAbstract/FREE Full Text
    1. Brown A. B.,
    2. Carpenter G.
    (1991) Acute regulation of the epidermal growth factor receptor in response to nerve growth factor. J. Neurochem 57, 1740–1709
    OpenUrlCrossRefPubMed
    1. Burrows R. C.,
    2. Wancio D.,
    3. Levitt P.,
    4. Lillien L.
    (1997) Response diversity and the timing of progenitor cell maturation are regulated by developmental changes in EGF-R expression in the cortex. Neuron 19, 251–267
    OpenUrlCrossRefPubMedWeb of Science
    1. Cepko C. L.,
    2. Ryder E. F.,
    3. Austin C. P.,
    4. Walsh C.,
    5. Fekete D. M.
    (1993) Lineage analysis using retrovirus vectors. Methods Enzymol 225, 933–960
    OpenUrlPubMedWeb of Science
    1. Chenn A.,
    2. McConnell S. K.
    (1995) Cleavage orientation and the asymmetric inheritance of Notch1 immunoreactivity in mammalian neurogenesis. Cell 82, 631–641
    OpenUrlCrossRefPubMedWeb of Science
    1. Ciccolini F.,
    2. Svendsen C. N.
    (1998) , Fibroblast growth factor 2 (FGF-2) promotes acquisition of epidermal growth factor (EGF) responsiveness in mouse striatal precursor cells: identification of neural precursors responding to both EGF and FGF-2. J. Neurosci 18, 7869–7880
    OpenUrlAbstract/FREE Full Text
    1. Davis A. A.,
    2. Temple S.
    (1994) A self-renewing multipotential stem cell in the embryonic rat cerebral cortex. Nature 372, 263–266
    OpenUrlCrossRefPubMedWeb of Science
    1. Doetsch F.,
    2. Garcia-Verdugo J. M.,
    3. Alvarez-Buylla A.
    (1999) Identification of the in vivo stem cells in the adult mammalian brain. Cell 97, 703–716
    OpenUrlCrossRefPubMedWeb of Science
    1. Eagleson K. L.,
    2. Ferri R. T.,
    3. Levitt P.
    (1996) Complementary distribution of collagen type IV and the epidermal growth factor receptor in the embryonic rat telencephalon. Cereb. Cortex 6, 540–549
    OpenUrlAbstract/FREE Full Text
    1. Earp H. S.,
    2. Austin K. S.,
    3. Blaisdell J.,
    4. Rubin R. A.,
    5. Nelson K. G.,
    6. Lee L. W.,
    7. Grisham J. W.
    (1986) Epidermal growth factor (EGF) stimulates EGF receptor synthesis. J. Biol. Chem 261, 4777–4780
    OpenUrlAbstract/FREE Full Text
    1. Echelard Y.,
    2. Epstein D. J.,
    3. St-Jacques B.,
    4. Shen L.,
    5. Mohler J.,
    6. McMahon J. A.,
    7. McMahon A. P.
    (1993) Sonic hedgehog, a member of a family of putative signaling molecules, is implicated in the regulation of CNS polarity. Cell 75, 1417–1430
    OpenUrlCrossRefPubMedWeb of Science
    1. Edlund T.,
    2. Jessell T. M.
    (1999) Progression from extrinsic to intrinsic signaling in cell fate specification: a view from the nervous system. Cell 96, 211–224
    OpenUrlCrossRefPubMedWeb of Science
    1. Ferri R. T.,
    2. Levitt P.
    (1995) Regulation of regional differences in the fate of cerebral cortical neurons by EGF family-matrix interactions. Development 121, 1151–1160
    OpenUrlAbstract
    1. Ferri R. T.,
    2. Eagleson K. L.,
    3. Levitt P.
    (1996) Environmental signals influence expression of a cortical areal phenotype in vitro independent of effects on progenitor cell proliferation. Dev. Biol 175, 184–190
    OpenUrlCrossRefPubMedWeb of Science
    1. Friedrich G.,
    2. Soriano P.
    (1991) Promoter traps in embryonic stem cells: a genetic screen to identify and mutate developmental genes in mice. Genes Dev 5, 1513–1523
    OpenUrlAbstract/FREE Full Text
    1. Furuta Y.,
    2. Piston D. W.,
    3. Hogan B. L.
    (1997) Bone morphogenetic proteins(BMPs) as regulators of dorsal forebrain development. Development 124, 2203–2212
    OpenUrlAbstract
    1. Gage F. H.,
    2. Ray J.,
    3. Fisher L. J.
    (1995) Isolation, characterization, and use of stem cells from the CNS. Annu. Rev. Neurosci 18, 159–192
    OpenUrlCrossRefPubMedWeb of Science
    1. Ghosh A.,
    2. Greenberg M. E.
    (1995) Distinct roles for bFGF and NT-3 in the regulation of cortical neurogenesis. Neuron 15, 89–103
    OpenUrlCrossRefPubMedWeb of Science
    1. Grandis J. R.,
    2. Zeng Q.,
    3. Tweardy D. J.
    (1996) Retinoic acid normalizes the increased gene transcription rate of TGF-alpha and EGFR in head and neck cancer cell lines. Nat. Med 2, 237–240
    OpenUrlCrossRefPubMedWeb of Science
    1. Gross R. E.,
    2. Mehler M. F.,
    3. Mabie P. C.,
    4. Zang Z.,
    5. Santschi L.,
    6. Kessler J.
    (1996) Bone morphogenetic proteins promote astroglial lineage commitment by mammalian subventricular zone progenitor cells. Neuron 17, 595–606
    OpenUrlCrossRefPubMedWeb of Science
    1. Grove E. A.,
    2. Williams B. P.,
    3. Li D. Q.,
    4. Hajhosseini M.,
    5. Friedrich A.,
    6. Price J.
    (1993) Multiple restricted lineages in the embryonic cerebral cortex. Development 17, 553–561
    1. Huang Z.,
    2. Shilo B. Z.,
    3. Kunes S.
    (1998) A retinal axon fascicle uses spitz, an EGF receptor ligand, to construct a synaptic cartridge in the brain of Drosophila. Cell 95, 693–703
    OpenUrlCrossRefPubMedWeb of Science
    1. Johe K. K.,
    2. Hazel T. G.,
    3. Muller T.,
    4. Dugich-Djordjevic M. M.,
    5. McKay R. D. G.
    (1996) Single factors direct the differentiation of stem cells from the fetal and adult central nervous system. Genes Dev 10, 3129–3140
    OpenUrlAbstract/FREE Full Text
    1. Kilpatrick T. J.,
    2. Bartlett P. F.
    (1993) Cloning and growth of multipotential neural precursors: requirement for proliferation and differentiation. Neuron 10, 255–265
    OpenUrlCrossRefPubMedWeb of Science
    1. Kilpatrick T. J.,
    2. Bartlett P. F.
    (1995) Cloned multipotential precursors from the mouse cerebrum require FGF-2, whereas glial restricted precursors are stimulated with either FGF-2 or EGF. J. Neurosci 15, 3653–3661
    OpenUrlAbstract
    1. Kornblum H. I.,
    2. Hussain R. J.,
    3. Bronstein J. M.,
    4. Gall C. M.,
    5. Lee D. C.,
    6. Seroogy K. B.
    (1997) Prenatal ontogeny of the epidermal growth factor receptor and its ligand, transforming growth factor alpha, in rat brain. J. Comp. Neurol 380, 243–261
    OpenUrlCrossRefPubMedWeb of Science
    1. Lecuit T.,
    2. Cohen S. M.
    (1998) Dpp receptor levels contribute to shaping the Dpp morphogen gradient in the Drosophila wing imaginal disc. Development 125, 4901–4907
    OpenUrlAbstract
    1. Levison S. W.,
    2. Goldman J. E.
    (1997) Multipotential and lineage restricted precursors coexist in the mammalian perinatal subventricular zone. J. Neurosci. Res 48, 83–94
    OpenUrlCrossRefPubMedWeb of Science
    1. Levitt P.,
    2. Cooper M. L.,
    3. Rakic P.
    (1983) Early divergence and changing proportions of neuronal and glial precursor cells in the primate cerebral ventricular zone. Dev. Biol 96, 472–484
    OpenUrlCrossRefPubMedWeb of Science
    1. Li W.,
    2. Cogswell C. A.,
    3. LoTurco J. J.
    (1998) Neuronal differentiation of precursors in the neocortical ventricular zone is triggered by BMP. J. Neurosci 18, 8853–8862
    OpenUrlAbstract/FREE Full Text
    1. Lillien L.
    (1995) Changes in retinal cell fate induced by overexpression of EGF receptor. Nature 377, 158–162
    OpenUrlCrossRefPubMed
    1. Lillien L.,
    2. Wancio D.
    (1998) Changes in epidermal growth factor receptor expression and competence to generate glia regulate timing and choice of differentiation in the retina. Mol. Cell. Neurosci 10, 296–308
    OpenUrlCrossRefPubMedWeb of Science
    1. Luskin M. B.,
    2. Pearlman A. L.,
    3. Sanes J. R.
    (1988) Cell lineage in the cerebral cortex of the mouse studied in vivo and in vitro with a recombinant retrovirus. Neuron 1, 635–647
    OpenUrlCrossRefPubMedWeb of Science
    1. Mabie P. C.,
    2. Mehler M. F.,
    3. Kessler J. A.
    (1999) Multiple roles of bone morphogenetic protein signaling in the regulation of cortical cell number and phenotype. J. Neurosci 19, 7077–7088
    OpenUrlAbstract/FREE Full Text
    1. Mayer-Proschel M.,
    2. Kalyani A. J.,
    3. Mujtaba T.,
    4. Rao M. S.
    (1997) Isolation of lineage-restricted neuronal precursors from multipotent neuroepithelial stem cells. Neuron 19, 773–785
    OpenUrlCrossRefPubMedWeb of Science
    1. McConnell S. K.
    (1988) Fates of visual cortical neurons in the ferret after isochronic and heterochronic transplantation. J. Neurosci 8, 945–974
    OpenUrlAbstract
    1. Merino R.,
    2. Ganan Y.,
    3. Macias D.,
    4. Economides A. N.,
    5. Sampath K. T.,
    6. Hurle J. M.
    (1998) Morphogenesis of digits in the avian limb is controlled by FGFs, TGFbetas, and noggin through BMP signaling. Dev. Biol 200, 35–45
    OpenUrlCrossRefPubMedWeb of Science
    1. Neubuser A.,
    2. Peters H.,
    3. Balling R.,
    4. Martin G. R.
    (1997) Antagonistic interactions between FGF and BMP signaling pathways: a mechanism for positioning the sites of tooth formation. Cell 90, 247–255
    OpenUrlCrossRefPubMedWeb of Science
    1. Niswander L.,
    2. Martin G. R.
    (1993) FGF-4 and BMP-2 have opposite effects on limb growth. FGF-4 and BMP-2 have opposite effects on limb growth. Nature 361, 68–71
    OpenUrlCrossRefPubMed
    1. Noramly S.,
    2. Morgan B. A.
    (1998) BMPs mediate lateral inhibition at successive stages in feather tract development. Development 125, 3775–3787
    OpenUrlAbstract
    1. Pizette S.,
    2. Niswander L.
    (1999) BMPs negatively regulate structure and function of the limb apical ectodermal ridge. Development 126, 883–894
    OpenUrlAbstract
    1. Qian X.,
    2. Davis A. A.,
    3. Goderie S. K.,
    4. Temple S.
    (1997) FGF2 concentration regulates the generation of neurons and glia from multipotent cortical stem cells. Neuron 18, 81–93
    OpenUrlCrossRefPubMedWeb of Science
    1. Qian X.,
    2. Goderie S. K.,
    3. Shen Q.,
    4. Stern J. H.,
    5. Temple S.
    (1998) Intrinsic programs of patterned cell lineages in isolated vertebrate CNS ventricular zone cells. Development 125, 3143–3152
    OpenUrlAbstract
    1. Raballo R.,
    2. Rhee J.,
    3. Lyn-Cook R.,
    4. Leckman J. F.,
    5. Schwartz M. L.,
    6. Vaccarino F. M.
    (2000) Basic fibroblast growth factor is necessary for cell proliferation and neurogenesis in the developing cerebral cortex. J Neurosci 20, 5012–5023
    OpenUrlAbstract/FREE Full Text
    1. Reynolds B. A.,
    2. Tetzlaff W.,
    3. Weiss S.
    (1992) A multipotent EGF-responsive striatal embryonic progenitor cell produces neurons and astrocytes. J. Neurosci 12, 4565–4574
    OpenUrlAbstract
    1. Reynolds B. A.,
    2. Weiss S.
    (1992) Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 255, 1707–1710
    OpenUrlAbstract/FREE Full Text
    1. Schluesener H.,
    2. Meyermann R.
    (1994) Expression of BMP-6, a TGF-related morphogenetic cytokine, in rat radial glia. Glia 12, 161–164
    OpenUrlCrossRefPubMedWeb of Science
    1. Seedorf K.,
    2. Shearman M.,
    3. Ullrich A.
    (1995) Rapid and long-term effects on protein kinase C on receptor tyrosine kinase phosphorylation and degradation. J. Biol. Chem 270, 18953–18960
    OpenUrlAbstract/FREE Full Text
    1. Shibutani M.,
    2. Lazarovici P.,
    3. Johnson A. C.,
    4. Katagiri Y.,
    5. Guroff G.
    (1998) Transcriptional down-regulation of epidermal growth factor receptors by nerve growth factor treatment of PC12 cells. J. Biol. Chem 273, 6878–6884
    OpenUrlAbstract/FREE Full Text
    1. Temple S.,
    2. Raff M.
    (1986) Clonal analysis of oligodendrocyte development in culture: evidence for a developmental clock that counts cell division. Cell 44, 773–779
    OpenUrlCrossRefPubMedWeb of Science
    1. ten Dijke P.,
    2. Yamashita H.,
    3. Sampath T. K.,
    4. Reddi A. H.,
    5. Estevez M.,
    6. Riddle D. L.,
    7. Ichijo H.,
    8. Heldin C. H.,
    9. Miyazono K.
    (1994) Identification of type I receptors for osteogenic protein-1 and bone morphogenetic protein-4. J. Biol. Chem 269, 16985–16988
    OpenUrlAbstract/FREE Full Text
    1. Vogt T. F.,
    2. Duboule D.
    (1999) Antagonists go out on a limb. Cell 99, 563–566
    OpenUrlCrossRefPubMedWeb of Science
    1. Walsh C.,
    2. Cepko C. L.
    (1988) Clonally related neurons show several patterns of migration in cerebral cortex. Science 241, 1342–1345
    OpenUrlAbstract/FREE Full Text
    1. Watanabe T.,
    2. Raff M. C.
    (1991) Rod photoreceptor development in vitro: intrinsic properties of proliferating neuroepithelial cells change as development proceeds in the rat retina. Neuron 4, 461–467
    OpenUrl
    1. Weise B.,
    2. Janet T.,
    3. Grothe C.
    (1993) Localization of bFGF and FGF-receptor in the developing nervous system of the embryonic and newborn rat. J. Neurosci. Res 34, 442–453
    OpenUrlCrossRefPubMedWeb of Science
    1. Williams B. P.,
    2. Price J.
    (1995) Evidence for multiple precursor cell types in the embryonic rat cerebral cortex. Neuron 14, 1181–1188
    OpenUrlCrossRefPubMedWeb of Science
    1. Xie T.,
    2. Spradling A. C.
    (1998) decapentaplegic is essential for the maintenance and division of germline stem cells in the Drosophila ovary. Cell 94, 251–260
    OpenUrlCrossRefPubMedWeb of Science
    1. Zhang D.,
    2. Mehler M. F.,
    3. Song Q.,
    4. Kessler J. A.
    (1998) Development of bone morphogenetic protein receptors in the nervous system and possible roles in regulating trkC expression. J. Neurosci 18, 3314–3326
    OpenUrlAbstract/FREE Full Text
    1. Zhong W.,
    2. Feder J. N.,
    3. Jiang M. M.,
    4. Jan L. Y.,
    5. Jan Y. N.
    (1996) Asymmetric localization of a mammalian numb homolog during mouse cortical neurogenesis. Neuron 17, 43–53
    OpenUrlCrossRefPubMedWeb of Science
    1. Zhu G.,
    2. Mehler M. F.,
    3. Mabie P. C.,
    4. Kessler J. A.
    (1999) Developmental changes in progenitor cell responsiveness to cytokines. J. Neurosci. Res 56, 131–145
    OpenUrlCrossRefPubMedWeb of Science
    1. Zou H.,
    2. Niswander L.
    (1996) Requirement for BMP signaling in interdigital apoptosis and scale formation. Science 272, 738–741
    OpenUrlAbstract/FREE Full Text
    1. Zou H.,
    2. Wieser R.,
    3. Massague J.,
    4. Niswander L.
    (1997) Distinct roles of type I bone morphogenetic protein receptors in the formation and differentiation of cartilage. Genes Dev 11, 2191–2203
    OpenUrlAbstract/FREE Full Text
    1. Zimmerman L. B.,
    2. De Jesus-Escobar J. M.,
    3. Harland R. M.
    (1996) The Spemann organizer signal noggin binds and inactivates bone morphogenetic protein 4. Cell 86, 599–606
    OpenUrlCrossRefPubMedWeb of Science
    1. Zuniga A.,
    2. Haramis A. P.,
    3. McMahon A. P.,
    4. Zeller R.
    (1999) Signal relay by BMP antagonism controls the SHH/FGF4 feedback loop in vertebrate limb buds. Nature 401, 598–602
    OpenUrlCrossRefPubMed
Previous ArticleNext Article
Back to top
Previous ArticleNext Article

This Issue

 Download PDF

Email

Thank you for your interest in spreading the word on Development.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
BMP and FGF regulate the development of EGF-responsive neural progenitor cells
(Your Name) has sent you a message from Development
(Your Name) thought you would like to see the Development web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
JOURNAL ARTICLES
BMP and FGF regulate the development of EGF-responsive neural progenitor cells
L. Lillien, H. Raphael
Development 2000 127: 4993-5005;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Citation Tools
JOURNAL ARTICLES
BMP and FGF regulate the development of EGF-responsive neural progenitor cells
L. Lillien, H. Raphael
Development 2000 127: 4993-5005;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Alerts

Please log in to add an alert for this article.

Sign in to email alerts with your email address

Article navigation

  • Top
  • Article
  • Info & metrics
  • PDF

Related articles

Cited by...

More in this TOC section

  • Groucho augments the repression of multiple Even skipped target genes in establishing parasegment boundaries
  • Axial skeletal patterning in mice lacking all paralogous group 8 Hox genes
  • Morphogenetic cell movements in the middle region of the dermomyotome dorsomedial lip associated with patterning and growth of the primary epaxial myotome
Show more JOURNAL ARTICLES

Similar articles

Other journals from The Company of Biologists

Journal of Cell Science

Journal of Experimental Biology

Disease Models & Mechanisms

Biology Open

Advertisement

A new society for regenerative biologists

Kenneth Poss and Elly Tanaka announce the launch of the International Society for Regenerative Biology (ISRB), which will promote research and education in the field of regenerative biology.


Upcoming special issue: call for papers

The Immune System in Development and Regeneration
Guest editors: Florent Ginhoux and Paul Martin
Submission deadline: 1 September 2021
Publication: Spring 2022

The special issue welcomes Review articles as well as Research articles, and will be widely promoted online and at key global conferences.


An interview with Cagney Coomer

Over a virtual chat, we spoke to Cagney Coomer about her experiences in the lab, the classroom and the community centre, and why she thinks outreach and role models are vital to science.


Development presents...

Our successful webinar series continues into 2021, with early-career researchers presenting their papers and a chance to virtually network with the developmental biology community afterwards. Here, Michèle Romanos talks about her new preprint, which mixes experimentation in quail embryos and computational modelling to understand how heterogeneity in a tissue influences cell rate.

Save your spot at our next session:

10 March
Time: 9:00 (GMT)
Chaired by: Thomas Lecuit

Join our mailing list to receive news and updates on the series.

Articles

  • Accepted manuscripts
  • Issue in progress
  • Latest complete issue
  • Issue archive
  • Archive by article type
  • Special issues
  • Subject collections
  • Sign up for alerts

About us

  • About Development
  • About the Node
  • Editors and board
  • Editor biographies
  • Travelling Fellowships
  • Grants and funding
  • Journal Meetings
  • Workshops
  • The Company of Biologists

For authors

  • Submit a manuscript
  • Aims and scope
  • Presubmission enquiries
  • Article types
  • Manuscript preparation
  • Cover suggestions
  • Editorial process
  • Promoting your paper
  • Open Access
  • Biology Open transfer

Journal info

  • Journal policies
  • Rights and permissions
  • Media policies
  • Reviewer guide
  • Sign up for alerts

Contact

  • Contact Development
  • Subscriptions
  • Advertising
  • Feedback
  • Institutional usage stats (logged-in users only)

 Twitter   YouTube   LinkedIn

© 2021   The Company of Biologists Ltd   Registered Charity 277992