Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Sign up for alerts
  • About us
    • About Development
    • About the Node
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contacts
    • Subscriptions
    • Feedback
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

User menu

  • Log in
  • Log out

Search

  • Advanced search
Development
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

supporting biologistsinspiring biology

Development

  • Log in
Advanced search

RSS  Twitter  Facebook  YouTube 

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Sign up for alerts
  • About us
    • About Development
    • About the Node
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contacts
    • Subscriptions
    • Feedback
JOURNAL ARTICLES
Two homeobox genes define the domain of EphA3 expression in the developing chick retina
D. Schulte, C.L. Cepko
Development 2000 127: 5033-5045;
D. Schulte
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
C.L. Cepko
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & metrics
  • PDF
Loading

Summary

Graded expression of the Eph receptor EphA3 in the retina and its two ligands, ephrin A2 and ephrin A5 in the optic tectum, the primary target of retinal axons, have been implicated in the formation of the retinotectal projection map. Two homeobox containing genes, SOHo1 and GH6, are expressed in a nasal-high, temporal-low pattern during early retinal development, and thus in opposing gradients to EphA3. Retroviral misexpression of SOHo1 or GH6 completely and specifically repressed EphA3 expression in the neural retina, but not in other parts of the central nervous system, such as the optic tectum. Under these conditions, some temporal ganglion cell axons overshot their expected termination zones in the rostral optic tectum, terminating aberrantly at more posterior locations. However, the majority of ganglion cell axons mapped to the appropriate rostrocaudal locations, although they formed somewhat more diffuse termination zones. These findings indicate that other mechanisms, in addition to differential EphA3 expression in the neural retina, are required for retinal ganglion axons to map to the appropriate rostrocaudal locations in the optic tectum. They further suggest that the control of topographic specificity along the retinal nasal-temporal axis is split into several independent pathways already at a very early time in development.

REFERENCES

    1. Austin C. P.,
    2. Feldman D. E.,
    3. Ida J. A., Jr.,
    4. Cepko C. L.
    (1995) Vertebrate retinal ganglion cells are selected from competent progenitors by the action of Notch. Development 121, 3637–3650
    OpenUrlAbstract
    1. Bober E.,
    2. Baum C.,
    3. Braun T.,
    4. Arnold H. H.
    (1994) A novel Nk-related mouse homeobox gene: expression in central and peripheral nervous structures during embryonic development. Dev. Biol 162, 288–303
    OpenUrlCrossRefPubMedWeb of Science
    1. Brown A.,
    2. Yates P. A.,
    3. Burrola P.,
    4. Ortuno D.,
    5. Vaidya A.,
    6. Jessell T. M.,
    7. Pfaff S. L.,
    8. O'Leary D. D.,
    9. Lemke G.
    (2000) Topographic mapping from the retina to the midbrain is controlled by relative but not absolute levels of EphA receptor signaling. Cell 102, 77–88
    OpenUrlCrossRefPubMedWeb of Science
    1. Bruhn S. L.,
    2. Cepko C. L.
    (1996) Development of the pattern of photoreceptors in the chick retina. J. Neurosci 16, 1430–1439
    OpenUrlAbstract/FREE Full Text
    1. Castellani V.,
    2. Yue Y.,
    3. Gao P. P.,
    4. Zhou R.,
    5. Bolz J.
    (1998) Dual action of a ligand for Eph receptors tyrosine kinases on specific populations of axons during development of cortical circuits. J. Neurosci 18, 4663–4672
    OpenUrlAbstract/FREE Full Text
    1. Chen J.,
    2. Ruley H. E.
    (1998) An enhancer element in the EphA2 (Eck) gene sufficient for rhombomere-specific expression is activated by HOXA1 and HOXB1 homeobox proteins. J Biol Chem 273, 24670–24675
    OpenUrlAbstract/FREE Full Text
    1. Cheng H.-J.,
    2. Nakamoto M.,
    3. Bergemann A. D.,
    4. Flanagan J. G.
    (1995) Complementary gradients in expression and binding of ELF-1 and Mek4 in development of the topographic projection map. Cell 82, 371–381
    OpenUrlCrossRefPubMedWeb of Science
    1. Ciossek T.,
    2. Monschau B.,
    3. Kremoser C.,
    4. Loschinger J.,
    5. Lang S.,
    6. Muller B. K.,
    7. Bonhoeffer F.,
    8. Drescher U.
    (1998) Eph receptor-ligand interactions are necessary for guidance of retinal ganglion cell axons in vitro. Eur. J. Neurosci 10, 1574–80
    OpenUrlCrossRefPubMedWeb of Science
    1. Connor R. J.,
    2. Menzel P.,
    3. Pasquale E. B.
    (1998) Expression and tyrosine phosphorylation of Eph receptors suggest multiple mechanisms in patterning of the visual system. Dev. Biol 193, 21–35
    OpenUrlCrossRefPubMedWeb of Science
    1. Crossley P. H.,
    2. Martinez S.,
    3. Martin G. R.
    (1996) Midbrain development induced by FGF8 in the chick embryo. Nature 380, 66–68
    OpenUrlCrossRefPubMed
    1. Deitcher D. L.,
    2. Fekete D. M.,
    3. Cepko C. L.
    (1994) Asymmetric expression of a novel homeobox gene in vertebrate sensory organs. J. Neurosci 14, 486–498
    OpenUrlAbstract
    1. Drescher U.
    (1997) The Eph family in the patterning of neural development. Curr Biol 7, 799–807
    1. Drescher U.,
    2. Kremoser C.,
    3. Handwerker C.,
    4. Loschinger J.,
    5. Noda M.,
    6. Bonhoeffer F.
    (1995) In vitro guidance of retinal ganglion cell axons by RAGS, a 25kDa tectal protein related to ligands for Eph receptor tyrosine kinases. Cell 82, 359–370
    OpenUrlCrossRefPubMedWeb of Science
    1. Dutting D.,
    2. Meyer S. U.
    (1995) Transplantations of chick eye anlage reveal early determination of nasotemporal polarity. Int. J. Dev. Biol 39, 921–931
    OpenUrlPubMed
    1. Dutting D.,
    2. Thanos S.
    (1995) Early determination of nasal-temporal retinotopic specificity in the eye anlage of the chick embryo. Dev. Biol 167, 263–281
    OpenUrlCrossRefPubMed
    1. Feldheim D. A.,
    2. Vanderhaeghen P.,
    3. Hansen M. J.,
    4. Frisen J.,
    5. Lu Q.,
    6. Barbacid M.,
    7. Flanagan J. G.
    (1998) Topographic guidance labels in a sensory projection to the forebrain. Neuron 21, 1303–1313
    OpenUrlCrossRefPubMedWeb of Science
    1. Feldheim D. A.,
    2. Kim Y. I.,
    3. Bergemann A. D.,
    4. Frisen J.,
    5. Barbacid M.,
    6. Flanagan J. G.
    (2000) Genetic analysis of ephrin-A2 and ephrin-A5 shows their requirement in multiple aspects of retinocollicular mapping. Neuron 25, 563–574
    OpenUrlCrossRefPubMedWeb of Science
    1. Flanagan J. G.,
    2. Vanderhaeghen P.
    (1998) The ephrins and Eph receptors in neural development. Ann. Rev. Neurosci 21, 309–345
    OpenUrlCrossRefPubMedWeb of Science
    1. Friedman G. C.,
    2. O'Leary D. D.
    (1996) Retroviral misexpression of engrailed genes in the chick optic tectum perturbs the topographic targeting of retinal axons. J. Neurosci 16, 5498–5509
    OpenUrlAbstract/FREE Full Text
    1. Frisen J.,
    2. Yates P. A.,
    3. McLaughlin T.,
    4. Friedman G.,
    5. O'Leary D. D.,
    6. Barbacid M.
    (1998) Ephrin-A5 (AL1/RGAS). is essential for proper retinal axon guidance and topographic mapping in the mammalian visual system. Neuron 20, 235–243
    OpenUrlCrossRefPubMedWeb of Science
    1. Frisen J.,
    2. Holmberg J.,
    3. Barbacid M.
    (1999) Ephrins and their Eph receptors: multitalented directors of embryonic development. EMBO J 18, 5159–5165
    OpenUrlFREE Full Text
    1. Gale N. W.,
    2. Holland S. J.,
    3. Valenzuela D. M.,
    4. Flenniken A.,
    5. Pan L.,
    6. Ryan T. E.,
    7. Henkemeyer M.,
    8. Strebhardt K.,
    9. Hirai H.,
    10. Wilkinson D. G.,
    11. Pawson T.,
    12. Davis S.,
    13. Yancopoulos G. D.
    (1996) Eph receptors and ligands comprise two major specificity subclasses and are reciprocally compartmentalized during embryogenesis. Neuron 17, 9–19
    OpenUrlCrossRefPubMedWeb of Science
    1. Gao P. P.,
    2. Yue Y.,
    3. Cerretti D. P.,
    4. Dreyfus C.,
    5. Zhou R.
    (1999) Ephrin dependent growth and pruning of hippocampal axons. Proc. Natl. Acad. Sci. USA 96, 4073–4077
    OpenUrlAbstract/FREE Full Text
    1. Gao P. P.,
    2. Sun C. H.,
    3. Zhou X. F.,
    4. DiCicco-Bloom E.,
    5. Zhou R.
    (2000) Ephrins stimulate or inhibit neurite outgrowth and survival as a function of neuronal cell type. J. Neurosci. Res 60, 427–436
    OpenUrlCrossRefPubMedWeb of Science
    1. Goodhill G. J.,
    2. Richards L. J.
    (1999) Retinotectal maps: models and misplaced data. Trends in Neurosci 22, 529–534
    OpenUrlCrossRefPubMedWeb of Science
    1. Hadrys T.,
    2. Braun T.,
    3. Rinkwitz-Brandt S.,
    4. Arnold H. H.,
    5. Bober E.
    (1998) Nkx5-1 controls semicircular canal formation in the mouse inner ear. Development 125, 33–39
    OpenUrlAbstract
    1. Hamburger V.,
    2. Hamilton H.
    (1951) A series of normal stages in the development of the chick embryo. J. Morphol 88, 35–46
    OpenUrl
    1. Holash J. A.,
    2. Pasquale E. B.
    (1995) Polarized expression of the receptor protein tyrosine kinase Cek5 in the developing avian visual system. Dev. Biol 172, 683–693
    OpenUrlCrossRefPubMedWeb of Science
    1. Holash J. A.,
    2. Soans C.,
    3. Chong L. D.,
    4. Shao H.,
    5. Dixit V. M.,
    6. Pasquale E. B.
    (1997) Reciprocal expression of the receptor Cek5 and its ligand(s) in the early retina. Dev. Biol 182, 256–269
    OpenUrlCrossRefPubMedWeb of Science
    1. Hornberger M. R.,
    2. Dutting D.,
    3. Ciossek T.,
    4. Yamada T.,
    5. Handwerker C.,
    6. Lang S.,
    7. Weth F.,
    8. Huf J.,
    9. Wessel R.,
    10. Logan C.,
    11. Tanaka H.,
    12. Drescher U.
    (1999) Modulation of EphA receptor function by coexpressed ephrin-A ligands on retinal ganglion cell axons. Neuron 22, 731–742
    OpenUrlCrossRefPubMedWeb of Science
    1. Hughes S. H.,
    2. Greenhouse J. J.,
    3. Petropoulos C. J.,
    4. an Sutrave P.
    (1987) Adaptor plasmids simplify the insertion of foreign DNA into helper-independent retroviral vectors. J. Virol 61, 3004–3012
    OpenUrlAbstract/FREE Full Text
    1. Itasaki N.,
    2. Nakamura H.
    (1996) A role for gradient en expression in the positional specification of the optic tectum. Neuron 16, 55–62
    OpenUrlCrossRefPubMedWeb of Science
    1. Itasaki N.,
    2. Ichijo H.,
    3. Matsuno T.,
    4. Nakamura H.
    (1991) Establishment of rostrocaudal polarity in the tectal primordium: engrailed expression and subsequent tectal polarity. Development 110, 331–342
    OpenUrlAbstract/FREE Full Text
    1. Joyner A. L.
    (1996) Engrailed, Wnt and Pax genes regulate midbrain-hindbrain development. Trends in Genetics 12, 14–20
    OpenUrl
    1. Katz L. C.,
    2. Shatz C. J.
    (1996) Synaptic activity and the construction of cortical circuits. Science 274, 1133–1138
    OpenUrlAbstract/FREE Full Text
    1. Koshiba-Takeuchi K.,
    2. Takeuchi J. K.,
    3. Matsumoto K.,
    4. Momose T.,
    5. Uno K.,
    6. Hoepker V.,
    7. Ogura K.,
    8. Takahashi N.,
    9. Nakamura H.,
    10. Yasuda K.,
    11. Ogura T.
    (2000) Tbx5 and the retinotectum projection. Science 287, 134–137
    OpenUrlAbstract/FREE Full Text
    1. Lee S. M.,
    2. Danielian P. S.,
    3. Fritzsch P.,
    4. McMahon A. P.
    (1997) Evidence that Fgf8 signaling from the midbrain-hindbrain junction regulates growth and polarity in the developing midbrain. Development 124, 959–969
    OpenUrlAbstract
    1. Logan C.,
    2. Wizenmann A.,
    3. Drescher U.,
    4. Monschau B.,
    5. Bonhoeffer F.,
    6. Lumsden A.
    (1996) Rostral optic tectum acquires rostral characteristics following ectopic engrailed expression. Curr. Biol 6, 1006–1014
    OpenUrlCrossRefPubMedWeb of Science
    1. McLoon S. C.
    (1991) A monoclonal antibody that distinguishes between temporal and nasal retinal axons. J. Neurosci 11, 1470–1477
    OpenUrlAbstract
    1. Monschau B.,
    2. Kremoser C.,
    3. Ohta K.,
    4. Tanaka H.,
    5. Kaneko T.,
    6. Yamada T.,
    7. Handwerker C.,
    8. Hornberger M. R.,
    9. Löschinger J.,
    10. Pasquale E.,
    11. Siever D. A.,
    12. Verderame M. F.,
    13. Muller B. K.,
    14. Bonhoeffer F.,
    15. Drescher U.
    (1997) Shared and distinct functions of RAGS and ELF-1 in guiding retinal axons. EMBO J 16, 1258–1267
    OpenUrlAbstract
    1. Morgan B. A.,
    2. Fekete D. M.
    (1996) Manipulating gene expression with replication-competent retroviruses. Methods Cell Biol 51, 185–218
    OpenUrlCrossRefPubMedWeb of Science
    1. Muller B. K.,
    2. Jay D. G.,
    3. Bonhoeffer F.
    (1996) Chromophore-assisted laser inactivation of a repulsive axonal guidance molecule. Curr. Biol 6, 1497–502
    OpenUrlCrossRefPubMedWeb of Science
    1. Nakamoto M.,
    2. Cheng H.-J.,
    3. Friedman G. C.,
    4. McLaughlin T.,
    5. Hansen M. J.,
    6. Yoon C. H.,
    7. O'Leary D. D.,
    8. Flanagan J. G.
    (1996) Topographic specification effects of ELF-1 on retinotectal axon guidance in vitro and retinal axon mapping in vivo. Cell 86, 755–766
    OpenUrlCrossRefPubMedWeb of Science
    1. Nakamura H.,
    2. O'Leary D. D.
    (1989) Inaccuracies in initial growth and arborization of chick retinotectal axons followed by course corrections and axon remodeling to develop topographic order. J. Neurosci 9, 3776–3795
    OpenUrlAbstract
    1. Petropoulos C. J.,
    2. Hughes S. H.
    (1991) Replication-competent retrovirus vectors for the transfer and expression of gene cassettes in avian cells. J Virol 65, 3728–3737
    OpenUrlAbstract/FREE Full Text
    1. Retaux S.,
    2. Harris W. A.
    (1996) Engrailed and retinotectal topography. Trends Neurosci 19, 542–546
    OpenUrlCrossRefPubMedWeb of Science
    1. Riddle R. D.,
    2. Johnson R. L.,
    3. Laufer E.,
    4. Tabin C.
    (1993) Sonic hedgehog mediates the polarizing activity of the ZPA. Cell 75, 1401–1416
    OpenUrlCrossRefPubMedWeb of Science
    1. Rinkwitz-Brand S.,
    2. Justus M.,
    3. Oldenettel I.,
    4. Arnold H. H.,
    5. Bober E.
    (1995). Distinct temporal expression of mouse Nkx-5.1 and Nkx.-5.2 homeobox genes during brain and ear development. Mech. Dev 52, 371–381
    OpenUrlCrossRefPubMedWeb of Science
    1. Roskies A.,
    2. Friedman G. C.,
    3. O'Leary D. D.
    (1995) Mechanisms and molecules controlling the development of retinal maps. Perspect. Dev. Neurobiol 3, 63–75
    OpenUrlPubMedWeb of Science
    1. Sajjadi F. G.,
    2. Pasquale E. B.
    (1993) Five novel avian Eph-related tyrosine kinases are differentially expressed. Oncogene 8, 1807–1813
    OpenUrlPubMedWeb of Science
    1. Savitt J. M.,
    2. Trisler D.,
    3. Hilt D. C.
    (1995) Molecular cloning of TOPAP: a topographically graded protein in the developing chick visual system. Neuron 14, 253–261
    OpenUrlCrossRefPubMedWeb of Science
    1. Schulte D.,
    2. Furukawa T.,
    3. Peters M. A.,
    4. Kozak C. A.,
    5. Cepko C. L.
    (1999) Misexpression of the EMX-related homeobox genes cVax and mVax2 ventralizes the retina and perturbs the retinotectal map. Neuron 24, 541–553
    OpenUrlCrossRefPubMedWeb of Science
    1. Sefton M.,
    2. Araujo M.,
    3. Nieto M. A.
    (1997) Novel expression gradients of Eph-like receptor tyrosine kinases in the developing chick retina. Dev. Biol 188, 363–368
    OpenUrlCrossRefPubMedWeb of Science
    1. Sobieszczuk D. F.,
    2. Wilkinson D. G.
    (1999) Masking of Eph receptors and ephrins. Curr. Biol 9, 469–470
    OpenUrl
    1. Sperry R. W.
    (1963) Chemoaffinity in the orderly growth of nerve fiber patterns and connections. Proc. Natl. Acad. Sci. USA 50, 703–710
    OpenUrlFREE Full Text
    1. Stadler H. S.,
    2. Solursh M.
    (1994) Characterization of the homeobox-containing gene GH6 identifies novel regions of homeobox gene expression in the developing chick embryo. Dev. Biol 161, 251–262
    OpenUrlCrossRefPubMedWeb of Science
    1. Stadler H. S.,
    2. Murray J. C.,
    3. Leysens N. J.,
    4. Goodfellow P. J.,
    5. Solursh M.
    (1995) Phylogenetic conservation and physical mapping of members of the H6 homeobox gene family. Mamm. Genome 6, 383–388
    OpenUrlCrossRefPubMed
    1. Stahl B.,
    2. Muller B.,
    3. von Boxberg Y.,
    4. Cox E. C.,
    5. Bonhoeffer F.
    (1990) Biochemical characterization of a putative axonal guidance molecule of the chick visual system. Neuron 5, 735–743
    OpenUrlCrossRefPubMedWeb of Science
    1. Taneja R.,
    2. Thisse B.,
    3. Rijli F. M.,
    4. Thisse C.,
    5. Bouillet P.,
    6. Dolle P.,
    7. Chambon P.
    (1996) The expression pattern of the mouse receptor tyrosine kinase gene MDK1 is conserved through evolution and requires Hoxa-2 for rhombomere-specific expression in mouse embryos. Dev. Biol 177, 397–412
    OpenUrlCrossRefPubMed
    1. von Boxberg Y.,
    2. Deiss S.,
    3. Schwarz U.
    (1993) Guidance and topographic stabilization of nasal chick retinal axons on target-derived components in vitro. Neuron 10, 345–357
    OpenUrlCrossRefPubMedWeb of Science
    1. Vortkamp A.,
    2. Lee K.,
    3. Lanske B.,
    4. Segre G. V.,
    5. Kronenberg H. M.,
    6. Tabin C. J.
    (1996) Regulation of rate of cartilage differentiation by Indian hedgehog and PTH-related protein. Science 273, 613–622
    OpenUrlAbstract
    1. Walter J.,
    2. Henke-Fahle S.,
    3. Bonhoeffer F.
    (1987) Avoidance of posterior tectal membranes by temporal retinal axons. Development 101, 909–913
    OpenUrlAbstract/FREE Full Text
    1. Wang W.,
    2. Van De Water T.,
    3. Lufkin T.
    (1998) Inner ear and maternal reproductive defects in mice lacking the Hmx3 homeobox gene. Development 125, 621–634
    OpenUrlAbstract
    1. Wilkinson D. G.
    (2000) Topographic mapping: organising by repulsion and competition?. Curr Biol 10, 447–451
    1. Yamagata M.,
    2. Mai A.,
    3. Pollerberg E.,
    4. Noda M.
    (1999) Regulatory interactions among topographic molecules CBF-1, CBF-2 and EphA3 in the developing chick retina. Dev. Growth Differ 41, 575–587
    OpenUrlCrossRefPubMed
    1. Yoshiura K.,
    2. Leysens N. J.,
    3. Reiter R. S.,
    4. Murray J. C.
    (1998) Cloning, characterization, and mapping of the mouse homeobox gene hmx1. Genomics 50, 61–68
    OpenUrlCrossRefPubMedWeb of Science
    1. Yuasa J.,
    2. Hirano S.,
    3. Yamagata M.,
    4. Noda M.
    (1996) Visual projection map specified by topographic expression of transcription factors in the retina. Nature 382, 632–635
    OpenUrlCrossRefPubMedWeb of Science
Previous ArticleNext Article
Back to top
Previous ArticleNext Article

This Issue

 Download PDF

Email

Thank you for your interest in spreading the word on Development.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Two homeobox genes define the domain of EphA3 expression in the developing chick retina
(Your Name) has sent you a message from Development
(Your Name) thought you would like to see the Development web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
JOURNAL ARTICLES
Two homeobox genes define the domain of EphA3 expression in the developing chick retina
D. Schulte, C.L. Cepko
Development 2000 127: 5033-5045;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Citation Tools
JOURNAL ARTICLES
Two homeobox genes define the domain of EphA3 expression in the developing chick retina
D. Schulte, C.L. Cepko
Development 2000 127: 5033-5045;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Alerts

Please log in to add an alert for this article.

Sign in to email alerts with your email address

Article navigation

  • Top
  • Article
  • Info & metrics
  • PDF

Related articles

Cited by...

More in this TOC section

  • A BAC transgenic analysis of the Mrf4/Myf5 locus reveals interdigitated elements that control activation and maintenance of gene expression during muscle development
  • Visualization and functional characterization of the developing murine cardiac conduction system
  • Indian hedgehog activates hematopoiesis and vasculogenesis and can respecify prospective neurectodermal cell fate in the mouse embryo
Show more JOURNAL ARTICLES

Similar articles

Other journals from The Company of Biologists

Journal of Cell Science

Journal of Experimental Biology

Disease Models & Mechanisms

Biology Open

Advertisement

Kathryn Virginia Anderson (1952-2020)

Developmental geneticist Kathryn Anderson passed away at home on 30 November 2020. Tamara Caspary, a former postdoc and friend, remembers Kathryn and her remarkable contribution to developmental biology.


Zooming into 2021

In a new Editorial, Editor-in-Chief James Briscoe and Executive Editor Katherine Brown reflect on the triumphs and tribulations of the last 12 months, and look towards a hopefully calmer and more predictable year.


Read & Publish participation extends worldwide

Over 60 institutions in 12 countries are now participating in our Read & Publish initiative. Here, James Briscoe explains what this means for his institution, The Francis Crick Institute. Find out more and view our full list of participating institutions.


Upcoming special issues

Imaging Development, Stem Cells and Regeneration
Submission deadline: 30 March 2021
Publication: mid-2021

The Immune System in Development and Regeneration
Guest editors: Florent Ginhoux and Paul Martin
Submission deadline: 1 September 2021
Publication: Spring 2022

Both special issues welcome Review articles as well as Research articles, and will be widely promoted online and at key global conferences.


Development presents...

Our successful webinar series continues into 2021, with early-career researchers presenting their papers and a chance to virtually network with the developmental biology community afterwards. Sign up to join our next session:

10 February
Time: 13:00 (GMT)
Chaired by: preLights

Articles

  • Accepted manuscripts
  • Issue in progress
  • Latest complete issue
  • Issue archive
  • Archive by article type
  • Special issues
  • Subject collections
  • Sign up for alerts

About us

  • About Development
  • About the Node
  • Editors and board
  • Editor biographies
  • Travelling Fellowships
  • Grants and funding
  • Journal Meetings
  • Workshops
  • The Company of Biologists

For authors

  • Submit a manuscript
  • Aims and scope
  • Presubmission enquiries
  • Article types
  • Manuscript preparation
  • Cover suggestions
  • Editorial process
  • Promoting your paper
  • Open Access
  • Biology Open transfer

Journal info

  • Journal policies
  • Rights and permissions
  • Media policies
  • Reviewer guide
  • Sign up for alerts

Contact

  • Contact Development
  • Subscriptions
  • Advertising
  • Feedback

 Twitter   YouTube   LinkedIn

© 2021   The Company of Biologists Ltd   Registered Charity 277992