Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Sign up for alerts
  • About us
    • About Development
    • About the Node
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contacts
    • Subscriptions
    • Feedback
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

User menu

  • Log in
  • Log out

Search

  • Advanced search
Development
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

supporting biologistsinspiring biology

Development

  • Log in
Advanced search

RSS  Twitter  Facebook  YouTube 

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Sign up for alerts
  • About us
    • About Development
    • About the Node
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contacts
    • Subscriptions
    • Feedback
JOURNAL ARTICLES
Endodermal Nodal-related signals and mesoderm induction in Xenopus
E. Agius, M. Oelgeschlager, O. Wessely, C. Kemp, E.M. De Robertis
Development 2000 127: 1173-1183;
E. Agius
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M. Oelgeschlager
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
O. Wessely
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
C. Kemp
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
E.M. De Robertis
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & metrics
  • PDF
Loading

Summary

In Xenopus, mesoderm induction by endoderm at the blastula stage is well documented, but the molecular nature of the endogenous inductive signals remains unknown. The carboxy-terminal fragment of Cerberus, designated Cer-S, provides a specific secreted antagonist of mesoderm-inducing Xenopus Nodal-Related (Xnr) factors. Cer-S does not inhibit signalling by other mesoderm inducers such as Activin, Derriere, Vg1 and BMP4, nor by the neural inducer Xnr3. In the present study we show that Cer-S blocks the induction of both dorsal and ventral mesoderm in animal-vegetal Nieuwkoop-type recombinants. During blastula stages Xnr1, Xnr2 and Xnr4 are expressed in a dorsal to ventral gradient in endodermal cells. Dose-response experiments using cer-S mRNA injections support the existence of an endogenous activity gradient of Xnrs. Xnr expression at blastula can be activated by the vegetal determinants VegT and Vg1 acting in synergy with dorsal (beta)-catenin. The data support a modified model for mesoderm induction in Xenopus, in which mesoderm induction is mediated by a gradient of multiple Nodal-related signals released by endoderm at the blastula stage.

REFERENCES

    1. Belo J. A.,
    2. Bouwmeester T.,
    3. Leyns L.,
    4. Kertesz N.,
    5. Gallo M.,
    6. Follettie M.,
    7. De Robertis E. M.
    (1997) Cerberus-like is a secreted factor with neuralizing activity expressed in the anterior primitive endoderm of the mouse gastrula. Mech. Dev 68, 45–57
    OpenUrlCrossRefPubMedWeb of Science
    1. Bouwmeester T.,
    2. Kim S. H.,
    3. Sasai Y.,
    4. Lu B.,
    5. De Robertis E. M.
    (1996) Cerberus is a head-inducing secreted factor expressed in the anterior endoderm of Spemann's organizer. Nature 382, 595–601
    OpenUrlCrossRefPubMed
    1. Brannon M.,
    2. Gomperts M.,
    3. Sumoy L.,
    4. Moon R. T.,
    5. Kimelman D.
    (1997) A beta-catenin/XTcf-3 complex binds to the siamois promoter toregulate dorsal axis specification in Xenopus. Genes Dev 11, 2359–2370
    OpenUrlAbstract/FREE Full Text
    1. Chang C.,
    2. Wilson P. A.,
    3. Mathews L. S.,
    4. Hemmati-Brivanlou A.
    (1997) A Xenopus type I activin receptor mediates mesodermal but not neural specification during embryogenesis. Development 124, 827–837
    OpenUrlAbstract
    1. Clements D.,
    2. Friday R.V.,
    3. Woodland H. R.
    (1999) Mode of action of VegT in mesoderm and endoderm formation. Development 126, 4903–4911
    OpenUrlAbstract
    1. Conlon F. L.,
    2. Lyons K. M.,
    3. Takaesu N.,
    4. Barth K. S.,
    5. Kispert A.,
    6. Herrmann B.,
    7. Robertson E. J.
    (1994) A primary requirement for nodal in the formation and maintenance of the primitive streak in the mouse. Development 120, 1919–1928
    OpenUrlAbstract
    1. De Robertis E. M.,
    2. Kim S. H.,
    3. Leyns L.,
    4. Piccolo S.,
    5. Bachiller D.,
    6. Agius E.,
    7. Belo J. A.,
    8. Yamamoto A.,
    9. Hainski-Brosseau A.,
    10. Brizuela B.,
    11. Wessely O.,
    12. Lu B.,
    13. Bouwmeester T.
    (1997) Patterning by genes expressed in Spemann's organizer. Cold Spring Harbor Symp. Quant. Biol 62, 169–175
    OpenUrlAbstract/FREE Full Text
    1. Ecochard V.,
    2. Cayrol C.,
    3. Foulquier F.,
    4. Zaraisky A.,
    5. Duprat A. M.
    (1995) A novel TGF--like gene, fugacin, specifically expressed in the Spemann organizer of Xenopus. Dev. Biol 172, 699–703
    OpenUrlCrossRefPubMed
    1. Erter C. E.,
    2. Solnica-Krezel L.,
    3. Wright C. V.
    (1998) Zebrafish nodal-related 2 encodes an early mesendodermal inducer signaling from the extraembryonic yolk syncytial layer. Dev. Biol 204, 361–372
    OpenUrlCrossRefPubMed
    1. Fekany K.,
    2. Yamanaka Y.,
    3. Leung T. C.,
    4. Sirotkin H. I.,
    5. Topczewski J.,
    6. Gates M. A.,
    7. Hibi M.,
    8. Renucci A.,
    9. Stemple D.,
    10. Radbill A.,
    11. Schier A. F.,
    12. Driever W.,
    13. Hirano T.,
    14. Talbot W. S.,
    15. Solnica-Krezel L.
    (1999) The zebrafish bozozok locus encodes Dharma, a homeodomain protein essential for induction of gastrula organizer and dorsoanterior embryonic structures. Development 126, 1427–1438
    OpenUrlAbstract
    1. Feldman B.,
    2. Gates M. A.,
    3. Egan E. S.,
    4. Dougan S. T.,
    5. Rennebeck G.,
    6. Sirotkin H. I.,
    7. Schier A. F.,
    8. Talbot W. S.
    (1998) Zebrafish organizer development and germ-layer formation require nodal-related signals. Nature 395, 181–185
    OpenUrlCrossRefPubMed
    1. Green J. B. A.,
    2. Smith J. C.
    (1990) Graded changes in dose of a Xenopus activin A homologue elicit stepwise transitions in embryonic cell fate. Nature 347, 391–394
    OpenUrlCrossRefPubMed
    1. Green J. B. A.,
    2. New H. V.,
    3. Smith J. C.
    (1992) Responses of embryonic Xenopus cells to activin and FGF are separated by multiple dose thresholds and correspond to distinct axes of the mesoderm. Cell 71, 731–739
    OpenUrlCrossRefPubMedWeb of Science
    1. Gritsman K.,
    2. Zhang J.,
    3. Cheng S.,
    4. Heckscher E.,
    5. Talbot W. S.,
    6. Schier A. F.
    (1999) The EGF-CFC protein one-eyed pinhead is essential for Nodal signaling. Cell 97, 121–132
    OpenUrlCrossRefPubMedWeb of Science
    1. Gurdon J. B.,
    2. Mitchell A.,
    3. Mahony D.
    (1995) Direct and continuous assessment by cells of their position in a morphogen gradient. Nature 376, 520–521
    OpenUrlCrossRefPubMed
    1. Hansen C. S.,
    2. Marion C. D.,
    3. Steele K.,
    4. George S.,
    5. Smith W. C.
    (1997) Direct neural induction and selective inhibition of mesoderm and epidermis inducers by Xnr3. Development 124, 483–492
    OpenUrlAbstract
    1. Harland R.,
    2. Gerhart J.
    (1997) Formation and function of Spemann's organizer. Ann. Rev. Cell. Dev. Biol 13, 611–667
    OpenUrlCrossRefPubMedWeb of Science
    1. Heasman J.
    (1997) Patterning the Xenopus blastula. Development 124, 4179–4191
    OpenUrlAbstract
    1. Heasman J.,
    2. Crawford A.,
    3. Goldstone K.,
    4. Garner-Hamrick P.,
    5. Gumbiner B.,
    6. McCrea P.,
    7. Kintner C.,
    8. Noro C.Y.,
    9. Wylie C.
    (1994) Overexpression of cadherins and underexpression of-catenin inhibit dorsal mesoderm induction in early Xenopus embryos. Cell 79, 791–803
    OpenUrlCrossRefPubMedWeb of Science
    1. Horb M. E.,
    2. Thomsen G. H.
    (1997) A vegetally localized T-box transcription factor in Xenopus eggs specifies mesodermand endoderm andis essential for embryonic mesoderm formation. Development 124, 1689–1698
    OpenUrlAbstract
    1. Hsu D. R.,
    2. Economides A. N.,
    3. Wang X.,
    4. Eimon P. M.,
    5. Harland R. M.
    (1998) The Xenopus dorsalizing factor gremlin identifies a novel family of secreted proteins that antagonize BMP activities. Mol. Cell 1, 673–683
    OpenUrl
    1. Jones C. M.,
    2. Kuehn M. R.,
    3. Hogan B. L. M.,
    4. Smith J. C.,
    5. Wright C. V. E.
    (1995) Nodal-related signals induce axial mesoderm and dorsalize mesoderm during gastrulation. Development 121, 3651–3662
    OpenUrlAbstract
    1. Jones C. M.,
    2. Armes N.,
    3. Smith J. C.
    (1996) Signalling by TGF-family members: short-range effects of Xnr-2 and BMP-4 contrast with the long-range effects of activin. Curr. Biol 6, 1468–1475
    OpenUrlCrossRefPubMed
    1. Joseph E. M.,
    2. Melton D. A.
    (1997) Xnr4: A Xenopus Nodal-related gene expressed in the Spemann organizer. Dev. Biol 184, 367–372
    OpenUrlCrossRefPubMedWeb of Science
    1. Joseph E. M.,
    2. Melton D. A.
    (1998) Mutant Vg1 ligands disrupt endoderm and mesoderm formation in Xenopus embryos. Development 125, 2677–2685
    OpenUrlAbstract
    1. Kessler D. S.,
    2. Melton D. A.
    (1994) Vertebrate embryonic induction: mesodermal and neural patterning. Science 266, 596–604
    OpenUrlAbstract/FREE Full Text
    1. Kofron M.,
    2. Demel T.,
    3. Xanthos J.,
    4. Lohr J.,
    5. Sun B.,
    6. Sive H.,
    7. Osada S.I.,
    8. Wright C.,
    9. Wylie C.,
    10. Heasman J.
    (1999) Mesoderm induction in Xenopus is a zygotic event regulated by maternal VegT via TGFgrowth factors. Development 126, 5759–5770
    OpenUrlAbstract
    1. Laurent M. N.,
    2. Blitz I. L.,
    3. Hashimoto C.,
    4. Rothbächer U.,
    5. Cho K. W. Y.
    (1997) The Xenopus homeobox gene Twin mediates Wnt induction of Goosecoid in establishment of Spemann's organizer. Development 124, 4905–4916
    OpenUrlAbstract
    1. Lemaire P.,
    2. Garrett N.,
    3. Gurdon J. B.
    (1995) Expression cloning of Siamois, a Xenopus homeobox gene expressed in dorsal-vegetal cells of blastulae and able to induce a complete secondary axis. Cell 81, 85–94
    OpenUrlCrossRefPubMedWeb of Science
    1. Lustig K. D.,
    2. Kroll K. L.,
    3. Sun E. E.,
    4. Kirschner M. W.
    (1996) Expression cloning of a Xenopus T-related gene (Xombi) involved in mesodermal patterning and blastopore lip formation. Development 122, 4001–4012
    OpenUrlAbstract
    1. McKendry R.,
    2. Hsu S. C.,
    3. Harland R. M.,
    4. Grosschedl R.
    (1997) LEF-1/TCF proteins mediate Wnt-inducible transcription from the Xenopus nodal-related promoter. Dev. Biol 192, 420–431
    OpenUrlCrossRefPubMed
    1. Meno C.,
    2. Gritsman K.,
    3. Ohishi S.,
    4. Ohfuji Y.,
    5. Heckscher E.,
    6. Mochida K.,
    7. Shimono A.,
    8. Kondoh H.,
    9. Talbot W. S.,
    10. Robertson E. J.,
    11. Schier A. F.,
    12. Hamada H.
    (1999) Mouse Lefty2 and zebrafish Antivin are feedback inhibitors of Nodal signaling during vertebrate gastrulation. Mol. Cell 4, 287–298
    1. Molenaar M.,
    2. van de Wetering M.,
    3. Oosterwegel M.,
    4. Peterson-Maduro J.,
    5. Godsave S.,
    6. Korinek V.,
    7. Roose J.,
    8. Destree O.,
    9. Clevers H.
    (1996) XTcf-3 transcription factor mediates-catenin-induced axis formation in Xenopus embryos. Cell 86, 391–399
    OpenUrlCrossRefPubMedWeb of Science
    1. Nieuwkoop P. D.
    (1973) The “organization center” of the amphibian embryo: its origin, spatial organization and morphogenetic action. Adv. Morphogen 10, 1–39
    OpenUrlPubMed
    1. Nomura M.,
    2. Li E.
    (1998) Smad2 role in mesoderm formation, left-right patterning and craniofacial development. Nature 393, 786–790
    OpenUrlCrossRefPubMed
    1. Osada S. I.,
    2. Wright C. V. E.
    (1999) Xenopus nodal -related signaling is essential for mesendodermal patterning during early embryogenesis. Development 126, 3229–3240
    OpenUrlAbstract
    1. Piccolo S.,
    2. Agius E.,
    3. Leyns L.,
    4. Bhattacharyya S.,
    5. Grunz H.,
    6. Bouwmeester T.,
    7. De Robertis E. M.
    (1999) The head inducer Cerberus is a multifunctional antagonist of Nodal, BMP and Wnt signals. Nature 397, 707–710
    OpenUrlCrossRefPubMed
    1. Rebagliati M. R.,
    2. Toyama R.,
    3. Haffter P.,
    4. Dawid I. B.
    (1998) cyclops encodes a nodal-related factor involved in midline signaling. Proc. Natl. Acad. Sci. 95, 9932–9937
    OpenUrlCrossRefPubMed
    1. Sampath K.,
    2. Rubinstein A. L.,
    3. Cheng A. M.,
    4. Liang J. O.,
    5. Fekany K.,
    6. Solnica-Krezel L.,
    7. Korzh V.,
    8. Halpern M. E.,
    9. Wright C. V. E.
    (1998). Induction of the zebrafish ventral brain and floorplate requires cyclops/nodal signalling. Nature 395, 185–189
    OpenUrlCrossRefPubMedWeb of Science
    1. Schneider S.,
    2. Steinbeisser H.,
    3. Warga R. M.,
    4. Hausen P.
    (1996) - catenin translocation into nuclei demarcates the dorsalizing centers in frog and fish embryos. Mech. Dev 57, 191–198
    OpenUrlAbstract
    1. Slack J. M. W.
    (1991) The nature of the mesoderm-inducing signal in Xenopus: a transfilter induction study. Development 113, 661–669
    OpenUrlCrossRefPubMedWeb of Science
    1. Smith J. C.
    (1995) Mesoderm-inducing factors and mesodermal patterning. Curr. Opin. Cell Biol 7, 856–861
    OpenUrlPubMedWeb of Science
    1. Smith J. C.,
    2. Slack J. M. W.
    (1983) Dorsalization and neural induction: properties of the organizer in Xenopus laevis. J. Embryol. Exp. Morphol 78, 299–317
    OpenUrlCrossRefPubMedWeb of Science
    1. Smith W. C.,
    2. Harland R. M.
    (1992) Expression cloning of noggin, a new dorsalizing factor localized to the Spemann organizer in Xenopus embryos. Cell 70, 829–840
    OpenUrlCrossRefPubMedWeb of Science
    1. Smith W. C.,
    2. McKendry R.,
    3. Ribisi S., Jr.,
    4. Harland R. M.
    (1995) A nodal -related gene defines a physical and functional domain within the Spemann organizer. Cell 82, 37–46
    OpenUrlCrossRefPubMedWeb of Science
    1. Song J.,
    2. Oh S. P.,
    3. Schrewe H.,
    4. Nomura M.,
    5. Lei H.,
    6. Okano M.,
    7. Gridley T.,
    8. Li E.
    (1999) The type II activin receptors are essential for egg cylinder growth, gastrulation, and rostral head development in mice. Dev. Biol 213, 157–169
    OpenUrlAbstract
    1. Steinbeisser H.,
    2. De Robertis E. M.,
    3. Ku M.,
    4. Kessler D. S.,
    5. Melton D. A.
    (1993) Xenopus axis formation: induction of goosecoid by injected Xwnt-8 and activin mRNA. Development 118, 499–507
    OpenUrlAbstract
    1. Sun B. I.,
    2. Bush S. M.,
    3. Collins-Racie L. A.,
    4. LaVallie E. R.,
    5. DiBlasio-Smith E. A.,
    6. Wolfman N. M.,
    7. McCoy J. M.,
    8. Sive H. L.
    (1999) derriere: a TGF-family member required for posterior development in Xenopus. Development 126, 1467–1482
    OpenUrlAbstract
    1. Thisse C.,
    2. Thisse B.
    (1999) Antivin, a novel and divergent member of the TGFsuperfamily, negatively regulates mesoderm induction. Development 126, 229–240
    OpenUrlCrossRefPubMedWeb of Science
    1. Thomsen G. H.,
    2. Melton D. A.
    (1993) Processed Vg1 protein is an axial mesoderm inducer in Xenopus. Cell 74, 433–441
    OpenUrlCrossRefPubMedWeb of Science
    1. Waldrip W. R.,
    2. Bikoff E. K.,
    3. Hoodless P. A.,
    4. Wrana J. L.,
    5. Robertson E. J.
    (1998) Smad2 signaling in extraembryonic tissues determines anterior-posterior polarity of the early mouse embryo. Cell 92, 797–808
    OpenUrlAbstract/FREE Full Text
    1. Watabe T.,
    2. Kim S.,
    3. Candia A.,
    4. Rothbächer U.,
    5. Hashimoto C.,
    6. Inoue K.,
    7. Cho K. W. Y.
    (1995) Molecular mechanisms of Spemann's organizer formation: conserved growth factor synergy between Xenopus and mouse. Genes Dev 9, 3038–3050
    OpenUrlAbstract
    1. Wylie C.,
    2. Kofron M.,
    3. Payne C.,
    4. Anderson R.,
    5. Hosobuchi M.,
    6. Joseph E.,
    7. Heasman J.
    (1996) Maternal-catenin establishes a ‘dorsal signal’ in early Xenopus embryos. Development 122, 2987–2996
    OpenUrlCrossRefPubMed
    1. Yasuo H.,
    2. Lemaire P.
    (1999) A two-step model for the fate determination of presumptive endodermal blastomeres in Xenopus embryos. Curr. Biol 9, 869–879
    OpenUrlCrossRefPubMedWeb of Science
    1. Zhang J.,
    2. Houston D. W.,
    3. King M. L.,
    4. Payne C.,
    5. Wylie C.,
    6. Heasman J.
    (1998) The role of maternal VegT in establishing the primary germ layers in Xenopus embryos. Cell 94, 515–524
    OpenUrlCrossRefPubMed
    1. Zhou X.,
    2. Sasaki H.,
    3. Lowe L.,
    4. Hogan B. L. M.,
    5. Kuehn M. R.
    (1993) Nodal is a novel TGF--like gene expressed in the mouse node during gastrulation. Nature 361, 543–547
Previous ArticleNext Article
Back to top
Previous ArticleNext Article

This Issue

 Download PDF

Email

Thank you for your interest in spreading the word on Development.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Endodermal Nodal-related signals and mesoderm induction in Xenopus
(Your Name) has sent you a message from Development
(Your Name) thought you would like to see the Development web site.
Share
JOURNAL ARTICLES
Endodermal Nodal-related signals and mesoderm induction in Xenopus
E. Agius, M. Oelgeschlager, O. Wessely, C. Kemp, E.M. De Robertis
Development 2000 127: 1173-1183;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Citation Tools
JOURNAL ARTICLES
Endodermal Nodal-related signals and mesoderm induction in Xenopus
E. Agius, M. Oelgeschlager, O. Wessely, C. Kemp, E.M. De Robertis
Development 2000 127: 1173-1183;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Alerts

Please log in to add an alert for this article.

Sign in to email alerts with your email address

Article navigation

  • Top
  • Article
  • Info & metrics
  • PDF

Related articles

Cited by...

More in this TOC section

  • Non-imprinted Igf2r expression decreases growth and rescues the Tme mutation in mice
  • The dermomyotome dorsomedial lip drives growth and morphogenesis of both the primary myotome and dermomyotome epithelium
  • REF-1, a protein with two bHLH domains, alters the pattern of cell fusion in C. elegans by regulating Hox protein activity
Show more JOURNAL ARTICLES

Similar articles

Other journals from The Company of Biologists

Journal of Cell Science

Journal of Experimental Biology

Disease Models & Mechanisms

Biology Open

Advertisement

The people behind the papers – George Britton and Aryeh Warmflash

George and Aryeh

First author George Britton and his supervisor Aryeh Warmflash discuss their new Development paper in which they apply advanced in vitro culturing techniques to investigate embryonic ectoderm patterning.


Travelling Fellowship – New imaging approach unveils a bigger picture

Highlights from Travelling Fellowship trips

Find out how Pamela Imperadore’s Travelling Fellowship grant from The Company of Biologists took her to Germany, where she used new imaging techniques to investigate the cellular machinery underlying octopus arm regeneration. Don’t miss the next application deadline for 2020 travel, coming up on 29 November. Where will your research take you?


Primer – Principles and applications of optogenetics in developmental biology

Schematic demonstrating the approaches to controlling protein activity using optogenetics.

Protein function can be controlled by light using optogenetic techniques. In their new Primer, Stefano De Renzis and his colleagues in Heidelberg provide an overview of the most commonly used optogenetic tools and their application in developmental biology.


preLights – Self-organised symmetry breaking in zebrafish reveals feedback from morphogenesis to pattern formation

Sundar Naganathan

preLighter Sundar Naganathan explains his selected preprint by Vikas Trivedi, Benjamin Steventon and their co-workers on pescoids, a new in vitro model system to study early zebrafish embryogenesis.


Spotlight – Can laboratory model systems instruct human limb regeneration?

An extract from a schematic demonstrating the possible pipeline for how discovery in lab model systems can influence applications for regenerative therapies.

One of the most challenging objectives of tissue regeneration research is regrowth of a lost or amputated limb. Here, Ben Cox, Maximina Yun and Kenneth Poss outline the research avenues yet to be explored to move closer to this capstone achievement.


Articles of interest in our sister journals

Tox4 modulates cell fate reprogramming

Lotte Vanheer, Juan Song, Natalie De Geest, Adrian Janiszewski, Irene Talon, Caterina Provenzano, Taeho Oh, Joel Chappell, Vincent Pasque
Journal of Cell Science

Drosophila melanogaster: a simple system for understanding complexity

Stephanie E. Mohr, Norbert Perrimon
Disease Models & Mechanisms

Articles

  • Accepted manuscripts
  • Issue in progress
  • Latest complete issue
  • Issue archive
  • Archive by article type
  • Special issues
  • Subject collections
  • Sign up for alerts

About us

  • About Development
  • About the Node
  • Editors and board
  • Editor biographies
  • Travelling Fellowships
  • Grants and funding
  • Journal Meetings
  • Workshops
  • The Company of Biologists

For authors

  • Submit a manuscript
  • Aims and scope
  • Presubmission enquiries
  • Article types
  • Manuscript preparation
  • Cover suggestions
  • Editorial process
  • Promoting your paper
  • Open Access
  • Biology Open transfer

Journal info

  • Journal policies
  • Rights and permissions
  • Media policies
  • Reviewer guide
  • Sign up for alerts

Contact

  • Contact Development
  • Subscriptions
  • Advertising
  • Feedback

 Twitter   YouTube   LinkedIn

© 2019   The Company of Biologists Ltd   Registered Charity 277992