Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Sign up for alerts
  • About us
    • About Development
    • About the Node
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contacts
    • Subscriptions
    • Advertising
    • Feedback
    • For library administrators
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

User menu

  • Log in
  • Log out

Search

  • Advanced search
Development
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

supporting biologistsinspiring biology

Development

  • Log in
Advanced search

RSS  Twitter  Facebook  YouTube 

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Sign up for alerts
  • About us
    • About Development
    • About the Node
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contacts
    • Subscriptions
    • Advertising
    • Feedback
    • For library administrators
JOURNAL ARTICLES
Autoregulation and multiple enhancers control Math1 expression in the developing nervous system
A.W. Helms, A.L. Abney, N. Ben-Arie, H.Y. Zoghbi, J.E. Johnson
Development 2000 127: 1185-1196;
A.W. Helms
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
A.L. Abney
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
N. Ben-Arie
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
H.Y. Zoghbi
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J.E. Johnson
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & metrics
  • PDF
Loading

Summary

Development of the vertebrate nervous system requires the actions of transcription factors that establish regional domains of gene expression, which results in the generation of diverse neuronal cell types. MATH1, a transcription factor of the bHLH class, is expressed during development of the nervous system in multiple neuronal domains, including the dorsal neural tube, the EGL of the cerebellum and the hair cells of the vestibular and auditory systems. MATH1 is essential for proper development of the granular layer of the cerebellum and the hair cells of the cochlear and vestibular systems, as shown in mice carrying a targeted disruption of Math1. Previously, we showed that 21 kb of sequence flanking the Math1-coding region is sufficient for Math1 expression in transgenic mice. Here we identify two discrete sequences within the 21 kb region that are conserved between mouse and human, and are sufficient for driving a lacZ reporter gene in these domains of Math1 expression in transgenic mice. The two identified enhancers, while dissimilar in sequence, appear to have redundant activities in the different Math1 expression domains except the spinal neural tube. The regulatory mechanisms for each of the diverse Math1 expression domains are tightly linked, as separable regulatory elements for any given domain of Math1 expression were not found, suggesting that a common regulatory mechanism controls these apparently unrelated domains of expression. In addition, we demonstrate a role for autoregulation in controlling the activity of the Math1 enhancer, through an essential E-box consensus binding site.

REFERENCES

    1. Airaksinen M. S.,
    2. Koltzenburg M.,
    3. Lewin G. R.,
    4. Masu Y.,
    5. Helbig C.,
    6. Wolf E.,
    7. Brem G.,
    8. Toyka K. V.,
    9. Thoenen H.,
    10. Meyer M.
    (1996) Specific subtypes of cutaneous mechanoreceptors require Neurotrophin-3 following peripheral target innervation. Neuron 16, 287–295
    OpenUrlCrossRefPubMedWeb of Science
    1. Akazawa C.,
    2. Ishibashi M.,
    3. Shimizu C.,
    4. Nakanishi S.,
    5. Kageyama R.
    (1995) A mammalian helix-loop-helix factor structurally related to the product of the Drosophila proneural gene atonal is a positive transcriptional regulator expressed in the developing nervous system. J. Biol. Chem 270, 8730–8738
    OpenUrlAbstract/FREE Full Text
    1. Akazawa C.,
    2. Sasai Y.,
    3. Nakanishi S.,
    4. Kageyama R.
    (1992) Molecular characterization of a rat negative regulator with basic-helix-loop-helix structure predominantly expressed in the developing nervous system. J. Biol. Chem 267, 21879–21885
    OpenUrlAbstract/FREE Full Text
    1. Ben-Arie N.,
    2. Bellen H. J.,
    3. Armstrong D. L.,
    4. McCall A. E.,
    5. Gordadze P. R.,
    6. Guo Q.,
    7. Matzuk M. M.,
    8. Zoghbi H. Y.
    (1997) Math1 is essential for genesis of cerebellar granule neurons. Nature 390, 169–172
    OpenUrlCrossRefPubMedWeb of Science
    1. Ben-Arie N.,
    2. McCall A. E.,
    3. Berkman S.,
    4. Eichele G.,
    5. Bellen H. J.,
    6. Zoghbi H. Y.
    (1996) Evolutionary conservation of sequence and expression of the bHLH protein Atonal suggests a conserved role in neurogenesis. Human Molecular Genetics 5, 1207–1216
    OpenUrlAbstract/FREE Full Text
    1. Bermingham N. A.,
    2. Hassan B. A.,
    3. Price S. D.,
    4. Vollrath M. A.,
    5. Ben-Arie M.,
    6. Eatock R. A.,
    7. Bellen H. J.,
    8. Lysakowski A.,
    9. Zoghbi H. Y.
    (1999) Math1: An essential gene for the generation of inner ear hair cells. Science 284, 1837–1841
    OpenUrlAbstract/FREE Full Text
    1. Black B. L.,
    2. Molkentin J. D.,
    3. Olson E. N.
    (1998) Multiple roles for the MyoD basic region in transmission of transcriptional activation signals and interation with MEF2. Molec. Cell. Biol 18, 69–77
    OpenUrlAbstract/FREE Full Text
    1. Black B. L.,
    2. Olson E. N.
    (1998) Transcriptional control of muscle development by myocyte enhancer factor-2 (MEF2) proteins. Ann. Rev. Cell Dev. Biology 14, 167–196
    OpenUrlCrossRefPubMedWeb of Science
    1. Cabrera C. V.,
    2. Alonso M. C.
    (1991) Transcriptional activation by heterodimers of the achaete-scute and daughterless gene products of Drosophila. EMBO J 10, 2965–2973
    OpenUrlPubMedWeb of Science
    1. Campos-Ortega J. A.,
    2. Jan Y. N.
    (1991) Genetic and molecular bases of neurogenesis in Drosophila melanogaster. Annu. Rev. Neurosci 14, 399–420
    OpenUrlCrossRefPubMedWeb of Science
    1. Casarosa S.,
    2. Fode C.,
    3. Guillemot F.
    (1999) Mash1 regulates neurogenesis in the ventral telencephalon. Development 126, 525–534
    OpenUrlAbstract
    1. Cripps R. M.,
    2. Black B. L.,
    3. Zhao B.,
    4. Lien C. L.,
    5. Schulz R. A.,
    6. Olson E. N.
    (1998) The myogenic regulatory gene Mef2 is a direct target for transcriptional activation by Twist during Drosophila myogenesis. Genes Dev 12, 422–434
    OpenUrlAbstract/FREE Full Text
    1. Cubadda Y.,
    2. Heitzler P.,
    3. Ray R. P.,
    4. Bourouis M.,
    5. Ramain P.,
    6. Gelbart W.,
    7. Simpson P.,
    8. Haenlin M.
    (1997) u-shaped encodes a zinc finger protein that regulates the proneural genes achaete and scute during the formation of bristles in Drosophila. Genes Dev 11, 3083–3095
    OpenUrlAbstract/FREE Full Text
    1. Engelkamp D.,
    2. Rashbass P.,
    3. Seawright A.,
    4. van Heyningen V.
    (1999) Role of Pax 6 in development of the cerebellar system. Development 126, 3585–3596
    OpenUrlAbstract
    1. Fode C.,
    2. Gradwohl G.,
    3. Morin X.,
    4. Dierich A.,
    5. LeMeur M.,
    6. Goridis C.,
    7. Guillemot F.
    (1998) The bHLH protein NEUROGENIN2 is a detemination factor for epibranchial placode-derived sensory neurons. Neuron 120, 483–494
    1. Gomez-Skarmeta J. L.,
    2. del Corral R. D.,
    3. de la Calle-Mustienes E.,
    4. Ferre-Marco D.,
    5. Modolell J.
    (1996) Araucan and caupolican, two members of the novel iroquois complex, encode homeoproteins that control proneural and vein-forming genes. Cell 85, 95–105
    OpenUrlCrossRefPubMedWeb of Science
    1. Gomez-Skarmeta J. L.,
    2. Rodriguez I.,
    3. Martinez C.,
    4. Culi J.,
    5. Ferres-Marco D.,
    6. Beamonte D.,
    7. Modolell J.
    (1995) Cis-regulation of achaete and scute: shared enhancer-like elements drive their co-expression in proneural clusters of the imaginal discs. Genes Dev 9, 1869–1882
    OpenUrlAbstract/FREE Full Text
    1. Goulding M. D.,
    2. Chalepakis G.,
    3. Deutsch U.,
    4. Ersehius J. R.,
    5. Gruss P.
    (1991) Pax3, a novel murine DNA binding protein expressed during early neurogenesis. EMBO J 10, 1135–1147
    OpenUrlPubMedWeb of Science
    1. Gradwohl G.,
    2. Fode C.,
    3. Guillemot F.
    (1996) Restricted Expression of a novel murine atonal -related bHLH protein in undifferentiated neural precursors. Dev. Biol 180, 227–241
    OpenUrlCrossRefPubMedWeb of Science
    1. Gu J.,
    2. Polak J. M.,
    3. Tapia F. J.,
    4. Marangos P. J.,
    5. Pearse A. G. E.
    (1981) Neuron specific enolase in the Merkel cells of mammalian skin. Am. J. Pathology 104, 63–68
    OpenUrlPubMedWeb of Science
    1. Guillemot F.,
    2. Lo L. C.,
    3. Johnson J. E.,
    4. Auerbach A.,
    5. Anderson D. J.,
    6. Joyner A. L.
    (1993) Mammalian achaete-scute homolog 1 is required for the early development of olfactory and autonomic neurons. Cell 75, 463–476
    OpenUrlCrossRefPubMedWeb of Science
    1. Hartschuh W.,
    2. Weihe E.,
    3. Yanaihara N.,
    4. Reinecke M.
    (1983) Immunohistochemical localization of vasoactive intestinal polypeptide (VIP) in Merkel cells of various mammals: evidence for a neuromodulatory function of the Merkel cell. J. Invest. Dermatol 81, 361–364
    OpenUrlCrossRefPubMedWeb of Science
    1. Helms A. W.,
    2. Johnson J. E.
    (1998) Progenitors of dorsal commissuralinterneurons are defined by MATH1 expression. Development 125, 919–925
    OpenUrlAbstract
    1. Henrique D.,
    2. Tyler D.,
    3. Kintner C.,
    4. Heath J. K.,
    5. Lewis J. H.,
    6. Ish-Horowicz D.,
    7. Storey K. G.
    (1997) cash4, a novel achaete-scute homolog induced by Hensen's node during generation of the posterior nervous system. Genes Dev 11, 603–615
    OpenUrlAbstract/FREE Full Text
    1. Hogan B.
    (1996) Bone Morphogenetic Proteins: multifunctional regulators of vertebrate development. Genes Dev 10, 1580–1594
    OpenUrlFREE Full Text
    1. Horton S.,
    2. Meredith A.,
    3. Richardson J. A.,
    4. Johnson J. E.
    (1999) Correct coordination of neuronal differentiation events in ventral forebrain requires the bHLH factor MASH1. Molec. Cell. Neurosci 14, 355–369
    OpenUrlCrossRefPubMedWeb of Science
    1. Isaka F.,
    2. Ishibashi M.,
    3. Taki W.,
    4. Hashimoto N.,
    5. Nakanishi S.,
    6. Kageyama R.
    (1999) Ectopic expression of the bHLH gene Math1 disturbs neural development. Eur. J. Neurosci 11, 2582–2588
    OpenUrlCrossRefPubMedWeb of Science
    1. Jan L.,
    2. Jan Y. N.
    (1993) HLH proteins, fly neurogenesis, and vertebrate myogenesis. Cell 75, 827–830
    OpenUrlCrossRefPubMedWeb of Science
    1. Jarman A. P.,
    2. Grau Y.,
    3. Jan L. Y.,
    4. Jan Y. N.
    (1993) atonal is a proneural gene that directs chordotonal organ formation in the Drosophila peripheral nervous system. Cell 73, 1307–1321
    OpenUrlCrossRefPubMedWeb of Science
    1. Jarman A. P.,
    2. Grell E. H.,
    3. Ackerman L.,
    4. Jan L. Y.,
    5. Jan Y. N.
    (1994) atonal is the proneural gene for Drosophila photoreceptors. Nature 369, 398–400
    OpenUrlCrossRefPubMed
    1. Jarman A. P.,
    2. Sun Y.,
    3. Jan L. Y.,
    4. Jan Y. N.
    (1995) Role of the proneural gene, atonal, in formation of Drosophila chordotonal organs and photoreceptors. Development 121, 2019–2030
    OpenUrlAbstract
    1. Johnson J. E.,
    2. Birren S. J.,
    3. Anderson D. J.
    (1990) Two rat homologues of Drosophila achaete-scute specifically expressed in neuronal precursors. Nature 346, 858–861
    OpenUrlCrossRefPubMedWeb of Science
    1. Kageyama R.,
    2. Sasai Y.,
    3. Akazawa C.,
    4. Ishibashi M.,
    5. Takebayashi K.,
    6. Shimizu C.,
    7. Tomita K.,
    8. Nakanishi S.
    (1995) Regulation of mammalian neural development by helix-loop-helix transcription factors. Critical Reviews in Neurobiology 9, 177–188
    OpenUrlPubMedWeb of Science
    1. Kim P.,
    2. Helms A. W.,
    3. Johnson J. E.,
    4. Zimmerman K.
    (1997) XATH1, a vertebrate homolog of Drosophila atonal, induces neuronal differentiation within ectodermal progenitors. Dev. Biol 187, 1–12
    OpenUrlCrossRefPubMedWeb of Science
    1. Krämer H.,
    2. Cagan R. L.,
    3. Zipursky S. L.
    (1991) Interaction of bride of sevenless membrane-bound ligand and the sevenless tyrosine-kinase receptor. Nature 352, 207–212
    OpenUrlCrossRefPubMed
    1. Lee J. E.
    (1997) Basic helix-loop-helix genes in neural development. Curr. Opin. Neurobiol 7, 13–20
    OpenUrlCrossRefPubMedWeb of Science
    1. Lee J. E.,
    2. Hollenberg S. M.,
    3. Snider L.,
    4. Turner D. L.,
    5. Lipnick N.,
    6. Weintraub H.
    (1995) Conversion of Xenopus ectoderm into neurons by NeuroD, a basic-helix-loop-helix protein. Science 268, 836–844
    OpenUrlAbstract/FREE Full Text
    1. Lee K. J.,
    2. Jessell T. M.
    (1999) The specification of dorsal cell fates in the vertebrate central nervous system. Ann. Rev. Neuroscience 22, 261–294
    OpenUrlCrossRefPubMedWeb of Science
    1. Leyns L.,
    2. Gomez-Skarmeta J. L.,
    3. Dambly-Chaudiere C.
    (1996) Iroquois: a prepattern gene that controls the formation of bristles on the thorax of Drosophila. Mechan. Dev 59, 63–72
    OpenUrlCrossRefPubMedWeb of Science
    1. Ma Q.,
    2. Chen Z.,
    3. del Barco Barrantes I.,
    4. de la Pompa J. L.,
    5. Anderson D. J.
    (1998) neurogenin1 is essential for the determination of neuronal precursors for proximal cranial sensory ganglia. Neuron 120, 469–482
    1. Ma Q.,
    2. Kintner C.,
    3. Anderson D. J.
    (1996) Identification of neurogenin, a vertebrate neuronal determination gene. Cell 87, 43–52
    OpenUrlCrossRefPubMedWeb of Science
    1. MacKenzie A.,
    2. Purdie L.,
    3. Davidson D.,
    4. Collinson M.,
    5. Hill R. E.
    (1997) Two enhancer domains control early aspects of the complex expression pattern of Msx1. Mech. Dev 62, 29–40
    OpenUrlCrossRefPubMed
    1. Manzanares M.,
    2. Cordes S.,
    3. Ariza-McNaughton L.,
    4. Sadl V.,
    5. Maruthainar K.,
    6. Barsh G.,
    7. Krumlauf R.
    (1999) Conserved and distinct roles of kriesler in regulation of the paralogous Hoxa3 and Hoxb3 genes. Development 126, 759–769
    OpenUrlAbstract
    1. Martinez C.,
    2. Modolell J.
    (1991) Cross-regulatoy interactions between the proneural achaete and acute genes of Drosophila. Science 251, 1485–1487
    OpenUrlAbstract/FREE Full Text
    1. Maruouka Y.,
    2. Ohbayashi N.,
    3. Hoshikawa M.,
    4. Itoh N.,
    5. Hogan B. L. M.,
    6. Furuta Y.
    (1998) Comparison of the expression of three highly related genes, Fgf8, Fgf17, and Fgf18 in the mouse embryo. Mech. Dev 74, 175–177
    OpenUrlCrossRefPubMedWeb of Science
    1. McCormick M. B.,
    2. Tamini R. M.,
    3. Snider L.,
    4. Asakura A.,
    5. Bergstorm D.,
    6. Tapscott S. J.
    (1996) neuroD2 and neuroD3: distinct expression patterns and transcriptional activation potentials within the neuroD gene family. Molec. Cell. Biol 16, 5792–5800
    OpenUrlAbstract/FREE Full Text
    1. McMahon A. P.
    (1992) The Wnt family of developmental regulators. Trends in Genetics 8, 236–242
    1. Mercer E. H.,
    2. Hoyle G. W.,
    3. Kapur R. P.,
    4. Brinster R. L.,
    5. Palmiter R. D.
    (1991) The dopamine β-hydroxylase gene promoter directs expression of E. coli lacZ to sympathetic and other neurons in transgenic mice. Neuron 7, 703–716
    OpenUrlCrossRefPubMedWeb of Science
    1. Murre C.,
    2. McCaw P. S.,
    3. Baltimore D.
    (1989) A new DNA binding and dimerization motif in immunoglobin enhancer binding, daughterless, MyoD and myc proteins. Cell 56, 777–783
    OpenUrlCrossRefPubMedWeb of Science
    1. Naya F. J.,
    2. Wu C.,
    3. Richardson J. A.,
    4. Overbeek P.,
    5. Olson E. N.
    (1999) Transcriptional activity of MEF2 during mouse embryogenesis monitored with a MEF-2 dependent transgene. Development 126, 2045–2052
    OpenUrlAbstract
    1. Ramain P.,
    2. Heitzler P.,
    3. Haenlin M.,
    4. Simpson P.
    (1993) pannier, a negative regulatory of achaete and scute in Drosophila, encodes a zinc finger protein with homology to the vertebrate transcription factor GATA-1. Development 119, 1277–1291
    OpenUrlAbstract
    1. Rowitch D. H.,
    2. Echelard Y.,
    3. Danielian P. S.,
    4. Gellner K.,
    5. Brenner S.,
    6. McMahon A. P.
    (1998) Identification of an evolutionarily conserved 110 base-pair cis -acting regulatory sequence that governs Wnt-1 expression in the murine neural plate. Development 125, 2735–2746
    OpenUrlAbstract
    1. Shimizu C.,
    2. Akazawa C.,
    3. Nakanishi S.,
    4. Kageyama R.
    (1995) MATH-2, a mammalian helix-loop-helix factor structurally related to the product of the Drosophila proneural gene atonal, is specifically expressed in the nervous system. Eur. J. Biochem 229, 239–248
    OpenUrlPubMedWeb of Science
    1. Skeath J. B.,
    2. Carroll S. B.
    (1991) Regulation of achaete-scute gene expression and sensory organ pattern formation in the Drosophila wing. Genes and Development 5, 984–995
    OpenUrlAbstract/FREE Full Text
    1. Sommer L.,
    2. Ma Q.,
    3. Anderson D. J.
    (1996) neurogenins, a novel family of atonal-related bHLH transcription factors, are putative mammalian neuronal determination genes that reveal progenitor cell heterogenity in the developing CNS and PNS. Molec. Cell. Neurosci 8, 221–241
    OpenUrlCrossRefPubMedWeb of Science
    1. Sun Y.,
    2. Jan L. Y.,
    3. Jan Y. N.
    (1998) Transcriptional regulation of atona l during development of the Drosophila peripheral nervous system. Development 125, 3731–3740
    OpenUrlAbstract
    1. Torii M.,
    2. Matsuzaki F.,
    3. Osumi N.,
    4. Kaibuchi K.,
    5. Nakamura S.,
    6. Casarosa S.,
    7. Guillemot F.,
    8. Nakafuku M.
    (1999) Transcription factors Mash-1 and Prox-1 delineate early steps in differentiation of neural stem cells in the developing central nervous system. Development 126, 443–456
    OpenUrlAbstract
    1. Tuttle R.,
    2. Nakagawa Y.,
    3. Johnson J. E.,
    4. O'Leary D. D. M.
    (1999) Defects in thalamocortical axon pathfinding correlate with altered cell domains in embryonic MASH1 deficient mice. Development 126, 1903–1916
    OpenUrlAbstract
    1. van Doren M.,
    2. Bailey A. M.,
    3. Esnayra J.,
    4. Ede K.,
    5. Posakony J. W.
    (1994) Negative regulation of proneural gene activity: hairy is a direct transcriptional repressor of achaete. Genes Dev 8, 2729–2742
    OpenUrlAbstract/FREE Full Text
    1. van Doren M.,
    2. Powell P. A.,
    3. Pasternak D.,
    4. Singson A.,
    5. Posakony J. W.
    (1992) Spatial regulation of proneural gene activity: auto-and cross-activation of achaete is antagonized by extramacrochaetae. Genes Dev 6, 2592–2605
    OpenUrlAbstract/FREE Full Text
    1. Verma-Kurvari S.,
    2. Savage T.,
    3. Gowan K.,
    4. Johnson J. E.
    (1996) Lineage-specific regulation of the neural differentiation gene MASH1. Dev. Biol 180, 605–617
    OpenUrlCrossRefPubMedWeb of Science
    1. Verma-Kurvari S.,
    2. Savage T.,
    3. Smith D.,
    4. Johnson J. E.
    (1998) Multiple elements regulate Mash1 expression in the developing CNS. Dev. Biol 197, 106–116
    OpenUrlCrossRefPubMedWeb of Science
    1. Wang W.,
    2. Chen X.,
    3. Xu H.,
    4. Lufkin T.
    (1996) Msx3: a novel murine homolog of the Drosophila msh homeobox gene restricted to the dorsal embryonic central nervous system. Mechan. Dev 58, 203–215
    OpenUrlCrossRefPubMedWeb of Science
    1. Yee S.,
    2. Rigby P. W. J.
    (1993) The regulation of myogenin gene expression during the embryonic development of the mouse. Genes Dev 7, 1277–1289
    OpenUrlAbstract/FREE Full Text
    1. Zhang F.,
    2. Popperl H.,
    3. Morrison A.,
    4. Kovacs E. N.,
    5. Prideaux V.,
    6. Schwarz L.,
    7. Krumlauf R.,
    8. Rossant J.,
    9. Featherstone M. S.
    (1997) Elements both 5and 3 to the murine Hoxd4 gene establish anterior borders of expression in mesoderm and neurectoderm. Mech. Dev 67, 49–58
    OpenUrlCrossRefPubMedWeb of Science
Previous ArticleNext Article
Back to top
Previous ArticleNext Article

This Issue

 Download PDF

Email

Thank you for your interest in spreading the word on Development.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Autoregulation and multiple enhancers control Math1 expression in the developing nervous system
(Your Name) has sent you a message from Development
(Your Name) thought you would like to see the Development web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
JOURNAL ARTICLES
Autoregulation and multiple enhancers control Math1 expression in the developing nervous system
A.W. Helms, A.L. Abney, N. Ben-Arie, H.Y. Zoghbi, J.E. Johnson
Development 2000 127: 1185-1196;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Citation Tools
JOURNAL ARTICLES
Autoregulation and multiple enhancers control Math1 expression in the developing nervous system
A.W. Helms, A.L. Abney, N. Ben-Arie, H.Y. Zoghbi, J.E. Johnson
Development 2000 127: 1185-1196;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Alerts

Please log in to add an alert for this article.

Sign in to email alerts with your email address

Article navigation

  • Top
  • Article
  • Info & metrics
  • PDF

Related articles

Cited by...

More in this TOC section

  • Groucho augments the repression of multiple Even skipped target genes in establishing parasegment boundaries
  • Axial skeletal patterning in mice lacking all paralogous group 8 Hox genes
  • Morphogenetic cell movements in the middle region of the dermomyotome dorsomedial lip associated with patterning and growth of the primary epaxial myotome
Show more JOURNAL ARTICLES

Similar articles

Other journals from The Company of Biologists

Journal of Cell Science

Journal of Experimental Biology

Disease Models & Mechanisms

Biology Open

Advertisement

A new society for regenerative biologists

Kenneth Poss and Elly Tanaka announce the launch of the International Society for Regenerative Biology (ISRB), which will promote research and education in the field of regenerative biology.


Upcoming special issue: call for papers

The Immune System in Development and Regeneration
Guest editors: Florent Ginhoux and Paul Martin
Submission deadline: 1 September 2021
Publication: Spring 2022

The special issue welcomes Review articles as well as Research articles, and will be widely promoted online and at key global conferences.


An interview with Cagney Coomer

Over a virtual chat, we spoke to Cagney Coomer about her experiences in the lab, the classroom and the community centre, and why she thinks outreach and role models are vital to science.


Development presents...

Our successful webinar series continues into 2021, with early-career researchers presenting their papers and a chance to virtually network with the developmental biology community afterwards. Here, Michèle Romanos talks about her new preprint, which mixes experimentation in quail embryos and computational modelling to understand how heterogeneity in a tissue influences cell rate.

Save your spot at our next session:

10 March
Time: 9:00 (GMT)
Chaired by: Thomas Lecuit

Join our mailing list to receive news and updates on the series.

Articles

  • Accepted manuscripts
  • Issue in progress
  • Latest complete issue
  • Issue archive
  • Archive by article type
  • Special issues
  • Subject collections
  • Sign up for alerts

About us

  • About Development
  • About the Node
  • Editors and board
  • Editor biographies
  • Travelling Fellowships
  • Grants and funding
  • Journal Meetings
  • Workshops
  • The Company of Biologists

For authors

  • Submit a manuscript
  • Aims and scope
  • Presubmission enquiries
  • Article types
  • Manuscript preparation
  • Cover suggestions
  • Editorial process
  • Promoting your paper
  • Open Access
  • Biology Open transfer

Journal info

  • Journal policies
  • Rights and permissions
  • Media policies
  • Reviewer guide
  • Sign up for alerts

Contact

  • Contact Development
  • Subscriptions
  • Advertising
  • Feedback
  • Institutional usage stats (logged-in users only)

 Twitter   YouTube   LinkedIn

© 2021   The Company of Biologists Ltd   Registered Charity 277992