Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Sign up for alerts
  • About us
    • About Development
    • About the Node
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contacts
    • Subscriptions
    • Feedback
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

User menu

  • Log in
  • Log out

Search

  • Advanced search
Development
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

supporting biologistsinspiring biology

Development

  • Log in
Advanced search

RSS  Twitter  Facebook  YouTube 

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Sign up for alerts
  • About us
    • About Development
    • About the Node
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contacts
    • Subscriptions
    • Feedback
JOURNAL ARTICLES
Ligand endocytosis drives receptor dissociation and activation in the Notch pathway
A.L. Parks, K.M. Klueg, J.R. Stout, M.A. Muskavitch
Development 2000 127: 1373-1385;
A.L. Parks
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
K.M. Klueg
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J.R. Stout
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M.A. Muskavitch
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & metrics
  • PDF
Loading

Summary

Endocytosis of the ligand delta; is required for activation of the receptor Notch during Drosophila development. The Notch extracellular domain (NotchECD) dissociates from the Notch intracellular domain (NotchICD) and is trans-endocytosed into delta;-expressing cells in wild-type imaginal discs. Reduction of dynamin-mediated endocytosis in developing eye and wing imaginal discs reduces Notch dissociation and Notch signalling. Furthermore, dynamin-mediated delta endocytosis is required for Notch trans-endocytosis in Drosophila cultured cell lines. Endocytosis-defective delta proteins fail to mediate trans-endocytosis of Notch in cultured cells, and exhibit aberrant subcellular trafficking and reduced signalling capacity in Drosophila. We suggest that endocytosis into delta-expressing cells of NotchECD bound to delta plays a critical role during activation of the Notch receptor and is required to achieve processing and dissociation of the Notch protein.

REFERENCES

    1. Artavanis-Tsakonas S.
    (1997) Alagille syndrome—a notch up for the Notch receptor. Nat. Genet 16, 212–213
    OpenUrlCrossRefPubMedWeb of Science
    1. Artavanis-Tsakonas S.,
    2. Rand M. D.,
    3. Lake R. J.
    (1999) Notch signalling: Cell fate control and signal integration in development. Science 284, 770–775
    OpenUrlAbstract/FREE Full Text
    1. Bellen H. J.,
    2. O'Kane C. J.,
    3. Wilson C.,
    4. Grossniklaus U.,
    5. Pearson R. K.,
    6. Gehring W. J.
    (1989) P-element mediated enhancer detection; a versatile method to study development in Drosophila. Genes Dev 3, 1288–1300
    OpenUrlAbstract/FREE Full Text
    1. Blaumueller C. M.,
    2. Qi H.,
    3. Zagouras P.,
    4. Artavanis-Tsakonas S.
    (1997) Intracellular cleavage of Notch leads to a heterodimeric receptor on the plasma membrane. Cell 90, 281–291
    OpenUrlCrossRefPubMedWeb of Science
    1. Brand A. H.,
    2. Perrimon N.
    (1993) Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118, 401–415
    OpenUrlAbstract
    1. Bray S.
    (1998) A Notch affair. Cell 93, 499–503
    OpenUrlCrossRefPubMedWeb of Science
    1. Cagan R. L.,
    2. Ready D. F.
    (1989) Notch is required for successive cell decisions in the developing Drosophila retina. Genes Dev 3, 1099–1112
    OpenUrlAbstract/FREE Full Text
    1. Chan Y.-M.,
    2. Jan Y. N.
    (1998) Roles for proteolysis and trafficking in Notch maturation and signal transduction. Cell 94, 423–426
    OpenUrlCrossRefPubMedWeb of Science
    1. Chitnis A.,
    2. Henrique D.,
    3. Lewis J.,
    4. Ish-Horowicz D.,
    5. Kintner C.
    (1995) Primary neurogenesis in Xenopus embryos regulated by a homologue of the Drosophila neurogenic gene Delta. Nature 375, 761–766
    OpenUrlCrossRefPubMedWeb of Science
    1. de Celis J. F.,
    2. Bray S.,
    3. García-Bellido A.
    (1997) Notch signalling regulates veinlet expression and establishes boundaries between veins and interveins in the Drosophila wing. Development 124, 1919–1928
    OpenUrlAbstract
    1. Diederich R. J.,
    2. Matsuno K.,
    3. Hing H.,
    4. Artavanis-Tsakonas S.
    (1994) Cytosolic interaction between deltex and Notch ankyrin repeats implicates deltex in the Notch signalling pathway. Development 120, 473–481
    OpenUrlAbstract
    1. Egan S. E.,
    2. St-Pierre B.,
    3. Leow C. C.
    (1998) Notch receptors, partners, and regulators: from conserved domains to powerful functions. Curr. Top. Microbiol. Immunol 228, 274–324
    OpenUrl
    1. Ellisen L. W.,
    2. Bird J.,
    3. West D. C.,
    4. Soreng A. L.,
    5. Reynolds T. C.,
    6. Smith S. D.,
    7. Sklar J.
    (1991) TAN-1, the human homolog of the Drosophila Notch gene, is broken by chromosomal translocations in T lymphoblastic neoplasms. Cell 66, 649–661
    OpenUrlCrossRefPubMedWeb of Science
    1. Fehon R. G.,
    2. Kooh P. J.,
    3. Rebay I.,
    4. Regan C. L.,
    5. Xu T.,
    6. Muskavitch M. A. T.,
    7. Artavanis-Tsakonas S.
    (1990) Molecular interactions between the protein products of the neurogenic loci Notch and Delta, two EGF homologous genes in Drosophila. Cell 61, 523–534
    OpenUrlCrossRefPubMedWeb of Science
    1. Fleming R. J.,
    2. Gu Y.,
    3. Hukriede N. A.
    (1997) Serrate-mediated activation of Notch is specifically blocked by the product of the gene Fringe in the dorsal compartment of the Drosophila wing imaginal disc. Development 124, 2973–2981
    OpenUrlAbstract
    1. Gallyas F.,
    2. Göres T.,
    3. Merchenthaler I.
    (1982) High-grade intensification of the end-product of the diaminobenzidine reaction for peroxidase histochemistry. J. Histochem. Cytochem 30, 183–184
    OpenUrlAbstract/FREE Full Text
    1. Greenwald I.
    (1998) LIN-12/Notch signaling: lessons from worms and flies. Genes Dev 124, 1751–1762
    OpenUrl
    1. Haenlin M.,
    2. Kramatschek B.,
    3. Campos-Ortega J. A.
    (1990) The pattern of transcription of the neurogenic gene Delta of Drosophila melanogaster. Development 110, 905–914
    OpenUrlAbstract/FREE Full Text
    1. Heldin C.-H.
    (1995) Dimerization of cell surface receptors in signal transduction. Cell 80, 213–223
    OpenUrlCrossRefPubMedWeb of Science
    1. Henderson S. T.,
    2. Gao D.,
    3. Christenson S.,
    4. Kimble J.
    (1997) Functional domains of LAG-2, a putative signaling ligand for LIN-12 and GLP-1 receptors in Caenorhabditis elegans. Mol. Biol. Cell 8, 1751–1762
    OpenUrlAbstract/FREE Full Text
    1. Huppert S. S.,
    2. Jacobsen T. L.,
    3. Muskavitch M. A. T.
    (1997) Feedback regulation is central to Delta-Notch signalling required for Drosophila wing vein morphogenesis. Development 124, 3283–3291
    OpenUrlAbstract
    1. Jacobsen T. L.,
    2. Brennan K.,
    3. Arias A. M.,
    4. Muskavitch M. A. T.
    (1998) Cis -interactions between Delta and Notch modulate neurogenic signalling in Drosophila. Development 125, 4531–4540
    OpenUrlAbstract
    1. Jarriault S.,
    2. Brou C.,
    3. Logeat F.,
    4. Schroeter E. H.,
    5. Kopan R.,
    6. Israel A.
    (1995) Signalling downstream of activated mammalian Notch. Nature 377, 355–358
    OpenUrlCrossRefPubMedWeb of Science
    1. Jen W. C.,
    2. Wettstein D.,
    3. Turner D.,
    4. Chitnis A.,
    5. Kintner C.
    (1997) The Notch ligand, X-Delta-2, mediates segmentation of the paraxial mesoderm in Xenopus embryos. Development 124, 1169–1178
    OpenUrlAbstract
    1. Jiang R.,
    2. Lan Y.,
    3. Chapman H. D.,
    4. Shawber C.,
    5. Norton C. R.,
    6. Serreze D. V.,
    7. Weinmaster G.,
    8. Gridley T.
    (1998) Defects in limb, craniofacial, and thymic development in Jagged2 mutant mice. Genes Dev 12, 1046–1057
    OpenUrlAbstract/FREE Full Text
    1. Kimble J.,
    2. Henderson S.,
    3. Crittenden S.
    (1998) Notch/Lin-12 signaling: transduction by regulated protein slicing. Trends Biochem. Sci 23, 353–357
    OpenUrlCrossRefPubMedWeb of Science
    1. Klein T.,
    2. Arias A. M.
    (1998) Interactions among Delta, Serrate and Fringe modulate Notch activity during Drosophila wing development. Development 125, 2951–2962
    OpenUrlAbstract
    1. Klueg K. M.,
    2. Muskavitch M. A. T.
    (1999) Ligand-receptor interactions and trans-endocytosis of Delta, Serrate and Notch: members of the Notch signalling pathway in Drosophila. J. Cell Sci 112, 3289–3297
    OpenUrlAbstract/FREE Full Text
    1. Klueg K. M.,
    2. Parody T. R.,
    3. Muskavitch M. A. T.
    (1998) Complex proteolytic processing acts on Delta, a transmembrane ligand for Notch, during Drosophila development. Mol. Biol. Cell 9, 1709–1723
    OpenUrlAbstract/FREE Full Text
    1. Kooh P. J.,
    2. Fehon R. G.,
    3. Muskavitch M. A. T.
    (1993) Implications of dynamic patterns of Delta and Notch expression for cellular interactions during Drosophila development. Development 117, 493–507
    OpenUrlAbstract
    1. Kopan R.,
    2. Schroeter E. H.,
    3. Weintraub H.,
    4. Nye J. S.
    (1996) Signal transduction by activated mNotch: importance of proteolytic processing and its regulation by the extracellular domain. Proc. Natl. Acad. Sci. USA 93, 1683–1688
    OpenUrlAbstract/FREE Full Text
    1. Kopczynski C. C.,
    2. Alton A. K.,
    3. Fechtel K.,
    4. Kooh P. J.,
    5. Muskavitch M. A.
    (1988) Delta, a Drosophila neurogenic gene, is transcriptionally complex and encodes a protein related to blood coagulation factors and epidermal growth factors of vertebrates. Genes Dev 2, 1723–1735
    OpenUrlAbstract/FREE Full Text
    1. Krämer H.,
    2. Phistry M.
    (1996) Mutations in the Drosophila hook gene inhibit endocytosis of the Boss transmembrane ligand into multivesicular bodies. J. Cell Biol 133, 1205–1216
    OpenUrlAbstract/FREE Full Text
    1. Krämer H.,
    2. Phistry M.
    (1999) Genetic analysis of hook, a gene required for endocytic trafficking in Drosophila. Genetics 151, 675–684
    OpenUrlAbstract/FREE Full Text
    1. Lecourtois M.,
    2. Schweisguth F.
    (1998) Indirect evidence for Delta-dependent intracellular processing of Notch in Drosophila embryos. Curr. Biol 8, 771–774
    OpenUrlCrossRefPubMedWeb of Science
    1. Lieber T.,
    2. Kidd S.,
    3. Alcamo E.,
    4. Corbin V.,
    5. Young M. W.
    (1993) Antineurogenic phenotypes induced by truncated Notch proteins indicate a role in signal transduction and may point to a novel function for Notch in nuclei. Genes Dev 7, 1949–1965
    OpenUrlAbstract/FREE Full Text
    1. Lieber T.,
    2. Wesley C.,
    3. Alcamo E.,
    4. Hassel B.,
    5. Krane J.,
    6. Campos-Ortega J. A.,
    7. Young M. W.
    (1992) Single amino acid substitutions in EGF-like elements of Notch and Delta modify Drosophila development and affect cell adhesion in vitro. Neuron 9, 847–859
    OpenUrlCrossRefPubMedWeb of Science
    1. Liposits Z. S.,
    2. Setálo G. Y.,
    3. Lerko B. F.
    (1984) Application of the silver-gold intensified 3,3-diaminobenzidine chromatin to the light and electron microscopic detection of the luteinizing hormone-releasing hormone system of the rat brain. Neurosci 13, 513–525
    OpenUrlCrossRefPubMedWeb of Science
    1. Lissemore J. L.,
    2. Starmer W. T.
    (1999) Phylogenetic analysis of vertebrate and invertebrate Delta/Serrate/LAG-2 (DSL) proteins. Molec. Phylog. Evol 11, 308–319
    OpenUrlCrossRefPubMedWeb of Science
    1. Logeat F.,
    2. Bessia C.,
    3. Brou B.,
    4. LeBail O.,
    5. Jarriault S.,
    6. Seidah N. G.,
    7. Israël A.
    (1998) The Notch1 receptor is cleaved constitutively by a furin-like convertase. Proc. Natl. Acad. Sci. USA 95, 8108–8112
    OpenUrlAbstract/FREE Full Text
    1. McNiven M. A.
    (1998) Dynamin: A molecular motor with pinchase action. Cell 94, 151–154
    OpenUrlCrossRefPubMedWeb of Science
    1. Muskavitch M. A. T.
    (1994) Delta-Notch signaling and Drosophila cell fate choice. Dev. Biol 166, 415–430
    OpenUrlCrossRefPubMedWeb of Science
    1. Parks A. L.,
    2. Huppert S. S.,
    3. Muskavitch M. A. T.
    (1997) The dynamics of neurogenic signalling underlying bristle development in Drosophila melanogaster. Mech. Dev 63, 61–74
    OpenUrlCrossRefPubMedWeb of Science
    1. Parks A. L.,
    2. Muskavitch M. A. T.
    (1993) Delta function is required for bristle organ determination and morphogenesis in Drosophila. Dev. Biol 157, 484–496
    OpenUrlCrossRefPubMedWeb of Science
    1. Parks A. L.,
    2. Turner F. R.,
    3. Muskavitch M. A. T.
    (1995) Relationships between complex Delta expression and the specification of retinal cell fates during Drosophila eye development. Mech. Dev 50, 201–216
    OpenUrlCrossRefPubMedWeb of Science
    1. Parody T. R.,
    2. Muskavitch M. A. T.
    (1993) The pleiotropic function of Delta during postembryonic development of Drosophila melanogaster. Genetics 135, 527–539
    OpenUrlAbstract/FREE Full Text
    1. Poodry C. A.
    (1990) shibire, a neurogenic mutant of Drosophila. Dev. Biol 138, 464–472
    OpenUrlCrossRefPubMedWeb of Science
    1. Poodry C. A.,
    2. Hall L.,
    3. Suzuki D. T.
    (1973) Developmental properties of shibirets: A pleiotropic mutation affecting larval and adult locomotion and development. Dev. Biol 32, 373–386
    OpenUrlCrossRefPubMedWeb of Science
    1. Qi H.,
    2. Rand M. D.,
    3. Wu X.,
    4. Sestan N.,
    5. Wang W.,
    6. Rakic P.,
    7. Xu T.,
    8. Artavanis-Tsakonas S.
    (1999) Processing of the Notch ligand Delta by the metalloprotease Kuzbanian. Science 283, 91–94
    OpenUrlAbstract/FREE Full Text
    1. Rebay I.,
    2. Fleming R. J.,
    3. Fehon R. G.,
    4. Cherbas L. F.,
    5. Cherbas P. T.,
    6. Artavanis-Tsakonas S.
    (1991) Specific EGF repeats of Notch mediate interactions with Delta and Serrate: implications for Notch as a multifunctional receptor. Cell 67, 687–699
    OpenUrlCrossRefPubMedWeb of Science
    1. Rooke J.,
    2. Pan D.,
    3. Xu T.,
    4. Rubin G. M.
    (1996) KUZ, a conserved metalloprotease-disintegrin protein with two roles in Drosophila neurogenesis. Science 273, 1227–1231
    OpenUrlAbstract
    1. Schmid S. L.,
    2. McNiven M. A.,
    3. Camilli P. D.
    (1998) Dynamin and its partners: a progress report. Curr. Opin. Cell Biol 10, 504–512
    OpenUrlCrossRefPubMedWeb of Science
    1. Schneider I.
    (1972) Cell lines derived from late embryonic stages of Drosophila melanogaster. J. Embryol. Exp. Morph 27, 353–365
    OpenUrlPubMedWeb of Science
    1. Schroeter E. H.,
    2. Kissinger J. A.,
    3. Kopan R.
    (1998) Notch-1 signalling requires ligand-induced proteolytic release of intracellular domain. Nature 393, 382–386
    OpenUrlCrossRefPubMedWeb of Science
    1. Seugnet L.,
    2. Simpson P.,
    3. Haenlin M.
    (1997) Requirement for dynaminduring Notch signalling in Drosophila neurogenesis. Dev. Biol 192, 585–598
    OpenUrlCrossRefPubMedWeb of Science
    1. Shellenbarger D. L.,
    2. Mohler J. D.
    (1978) Temperature sensitive periods and autonomy of pleiotropic effects of l(1)Ntsl, a conditional Notch lethal in Drosophila. Dev. Biol 62, 432–446
    OpenUrlCrossRefPubMedWeb of Science
    1. Sotillos S.,
    2. Roch F.,
    3. Campuzano S.
    (1997) The metalloprotease-disintegrin Kuzbanian participates in Notch activation during growth and patterning of Drosophila imaginal discs. Development 124, 4769–4779
    OpenUrlAbstract
    1. Staehling-Hampton K.,
    2. Jackson P. D.,
    3. Clark M. J.,
    4. Brand A. H.,
    5. Hoffmann F. M.
    (1994) Specificity of bone morphogenetic protein-related factors: cell fate and gene expression changes in Drosophila embryos induced by decapentaplegic but not 60A. Cell Growth Differ 5, 585–593
    OpenUrlAbstract
    1. Struhl G.,
    2. Adachi A.
    (1998) Nuclear access and action of Notch in vivo. Cell 93, 649–660
    OpenUrlCrossRefPubMedWeb of Science
    1. Sun X.,
    2. Artavanis-Tsakonas S.
    (1996) The intracellular deletions ofDELTA and SERRATE define dominant negative forms of the Drosophila Notch ligands. Development 122, 2465–2474
    OpenUrlAbstract
    1. Sun X.,
    2. Artavanis-Tsakonas S.
    (1997) Secreted forms of DELTA and SERRATE define antagonists of Notch signaling in Drosophila. Development 124, 3439–3448
    OpenUrlAbstract
    1. Vässin H.,
    2. Bremer K. A.,
    3. Knust E.,
    4. Campos-Ortega J. A.
    (1987) The neurogenic gene Delta of Drosophila melanogaster is expressed in neurogenic territories and encodes a putative transmembrane protein with EGF-like repeats. EMBO J 6, 3431–3440
    OpenUrlPubMedWeb of Science
    1. Wen C.,
    2. Metzstein M. M.,
    3. Greenwald I.
    (1997) Sup-17, a Caenorhabditis elegans ADAM protein related to Drosophila KUZBANIAN, and its role in LIN12/NOTCH signalling. Development 124, 4759–4767
    OpenUrlAbstract
    1. Woods D. F.,
    2. Poodry C. A.
    (1983) Cell surface proteins of Drosophila. Dev. Biol 96, 23–31
    OpenUrlCrossRefPubMed
    1. Xue Y.,
    2. Gao X.,
    3. Lindsell C. E.,
    4. Norton C. R.,
    5. Chang B.,
    6. Hicks C.,
    7. Gendron-Maguire M.,
    8. Rand E. B.,
    9. Weinmaster G.,
    10. Gridley T.
    (1999) Embryonic lethality and vascular defects in mice lacking the Notch ligand Jagged1. Hum. Mol. Genet 8, 723–730
    OpenUrlAbstract/FREE Full Text
Previous ArticleNext Article
Back to top
Previous ArticleNext Article

This Issue

 Download PDF

Email

Thank you for your interest in spreading the word on Development.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Ligand endocytosis drives receptor dissociation and activation in the Notch pathway
(Your Name) has sent you a message from Development
(Your Name) thought you would like to see the Development web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
JOURNAL ARTICLES
Ligand endocytosis drives receptor dissociation and activation in the Notch pathway
A.L. Parks, K.M. Klueg, J.R. Stout, M.A. Muskavitch
Development 2000 127: 1373-1385;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Citation Tools
JOURNAL ARTICLES
Ligand endocytosis drives receptor dissociation and activation in the Notch pathway
A.L. Parks, K.M. Klueg, J.R. Stout, M.A. Muskavitch
Development 2000 127: 1373-1385;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Alerts

Please log in to add an alert for this article.

Sign in to email alerts with your email address

Article navigation

  • Top
  • Article
  • Info & metrics
  • PDF

Related articles

Cited by...

More in this TOC section

  • Morphogenetic cell movements in the middle region of the dermomyotome dorsomedial lip associated with patterning and growth of the primary epaxial myotome
  • Germline and developmental roles of the nuclear transport factor importin (α)3 in C. elegans
  • Monofocal origin of telencephalic oligodendrocytes in the anterior entopeduncular area of the chick embryo
Show more JOURNAL ARTICLES

Similar articles

Other journals from The Company of Biologists

Journal of Cell Science

Journal of Experimental Biology

Disease Models & Mechanisms

Biology Open

Advertisement

Kathryn Virginia Anderson (1952-2020)

Developmental geneticist Kathryn Anderson passed away at home on 30 November 2020. Tamara Caspary, a former postdoc and friend, remembers Kathryn and her remarkable contribution to developmental biology.


Zooming into 2021

In a new Editorial, Editor-in-Chief James Briscoe and Executive Editor Katherine Brown reflect on the triumphs and tribulations of the last 12 months, and look towards a hopefully calmer and more predictable year.


Read & Publish participation extends worldwide

Over 60 institutions in 12 countries are now participating in our Read & Publish initiative. Here, James Briscoe explains what this means for his institution, The Francis Crick Institute. Find out more and view our full list of participating institutions.


Upcoming special issues

Imaging Development, Stem Cells and Regeneration
Submission deadline: 30 March 2021
Publication: mid-2021

The Immune System in Development and Regeneration
Guest editors: Florent Ginhoux and Paul Martin
Submission deadline: 1 September 2021
Publication: Spring 2022

Both special issues welcome Review articles as well as Research articles, and will be widely promoted online and at key global conferences.


Development presents...

Our successful webinar series continues into 2021, with early-career researchers presenting their papers and a chance to virtually network with the developmental biology community afterwards. Sign up to join our next session:

10 February
Time: 13:00 (GMT)
Chaired by: preLights

Articles

  • Accepted manuscripts
  • Issue in progress
  • Latest complete issue
  • Issue archive
  • Archive by article type
  • Special issues
  • Subject collections
  • Sign up for alerts

About us

  • About Development
  • About the Node
  • Editors and board
  • Editor biographies
  • Travelling Fellowships
  • Grants and funding
  • Journal Meetings
  • Workshops
  • The Company of Biologists

For authors

  • Submit a manuscript
  • Aims and scope
  • Presubmission enquiries
  • Article types
  • Manuscript preparation
  • Cover suggestions
  • Editorial process
  • Promoting your paper
  • Open Access
  • Biology Open transfer

Journal info

  • Journal policies
  • Rights and permissions
  • Media policies
  • Reviewer guide
  • Sign up for alerts

Contact

  • Contact Development
  • Subscriptions
  • Advertising
  • Feedback

 Twitter   YouTube   LinkedIn

© 2021   The Company of Biologists Ltd   Registered Charity 277992