Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Sign up for alerts
  • About us
    • About Development
    • About the Node
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contacts
    • Subscriptions
    • Advertising
    • Feedback
    • For library administrators
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

User menu

  • Log in
  • Log out

Search

  • Advanced search
Development
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

supporting biologistsinspiring biology

Development

  • Log in
Advanced search

RSS  Twitter  Facebook  YouTube 

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Sign up for alerts
  • About us
    • About Development
    • About the Node
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contacts
    • Subscriptions
    • Advertising
    • Feedback
    • For library administrators
JOURNAL ARTICLES
Microtubules and mitotic cycle phase modulate spatiotemporal distributions of F-actin and myosin II in Drosophila syncytial blastoderm embryos
V.E. Foe, C.M. Field, G.M. Odell
Development 2000 127: 1767-1787;
V.E. Foe
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
C.M. Field
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
G.M. Odell
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & tables
  • Supp info
  • Info & metrics
  • PDF
Loading

Summary

We studied cyclic reorganizations of filamentous actin, myosin II and microtubules in syncytial Drosophila blastoderms using drug treatments, time-lapse movies and laser scanning confocal microscopy of fixed stained embryos (including multiprobe three-dimensional reconstructions). Our observations imply interactions between microtubules and the actomyosin cytoskeleton. They provide evidence that filamentous actin and cytoplasmic myosin II are transported along microtubules towards microtubule plus ends, with actin and myosin exhibiting different affinities for the cell's cortex. Our studies further reveal that cell cycle phase modulates the amounts of both polymerized actin and myosin II associated with the cortex. We analogize pseudocleavage furrow formation in the Drosophila blastoderm with how the mitotic apparatus positions the cleavage furrow for standard cytokinesis, and relate our findings to polar relaxation/global contraction mechanisms for furrow formation.

REFERENCES

    1. Adams R. R.,
    2. Tavares A. A.,
    3. Salzberg A.,
    4. Bellen H. J.,
    5. Glover D. M.
    (1998) pavarotti encodes a kinesin-like protein required to organize the central spindle and contractile ring for cytokinesis. Genes Dev 15, 1483–1494
    OpenUrl
    1. Afshar K.,
    2. Gish B.,
    3. Wasserman S. A.
    (1999) Functional characterization of the diaphanous formin homology protein during cell division and early development in Drosophila. Molec. Biol. Cell 10, 384–.
    OpenUrl
    1. Baker J.,
    2. Theurkauf W. E.,
    3. Schubiger G.
    (1993) Dynamic changes in microtubule configuration correlate with nuclear migration in the preblastoderm Drosophila embryo. J. Cell Biol 122, 113–121
    OpenUrlAbstract/FREE Full Text
    1. Bonaccorsi S.,
    2. Giansanti M. G.,
    3. Gatti M.
    (1998) Spindle self-organization and cytokinesis during male meiosis in asterless mutants of Drosophila melanogaster. J. Cell Biol 142, 751–761
    OpenUrlAbstract/FREE Full Text
    1. Cao L.,
    2. Wang Y.
    (1990) Mechanism of the formation of contractile ring in dividing cultured animal cells. I. Recruitment of preexisting actin filaments into the cleavage furrow. J. Cell Biol 110, 1089–1095
    OpenUrlAbstract/FREE Full Text
    1. Cao L.,
    2. Wang Y.
    (1990) Mechanism of the formation of contractile ring in dividing cultured animal cells. II. Cortical movement of microinjected actin filaments. J. Cell Biol 111, 1905–1911
    OpenUrlAbstract/FREE Full Text
    1. Carmena M.,
    2. Riparbelli M. G.,
    3. Tavares A. M.,
    4. Adams R.,
    5. Callaini G.,
    6. Glover D. M.
    (1998) Drosophila polo kinase is required for cytokinesis. J. Cell Biol 143, 659–672
    OpenUrlAbstract/FREE Full Text
    1. Castrillon D. H.,
    2. Wasserman S. A.
    (1994) Diaphanous is required for cytokinesis in Drosophila and shares domains of similarity with the products of the limb deformity gene. Development 120, 3367–3377
    OpenUrlAbstract
    1. Cheney R. E.,
    2. O'Shea M. K.,
    3. Heuser J. E.,
    4. Coelho M. V.,
    5. Wolenski J. S.,
    6. Espreafico E. M.,
    7. Forscher P.,
    8. Larson R. E.,
    9. Mooseker M. S.
    (1993) Brain myosin-V is a two-headed unconventional myosin with motor activity [see comments]. Cell 75, 13–23
    OpenUrlCrossRefPubMedWeb of Science
    1. Dan K.
    (1954) The cortical movement in Arbacia punctulata eggs through cleavage cycles. Embryologia 2, 115–122
    OpenUrlCrossRef
    1. Egelhoff T. T.,
    2. Lee R. J.,
    3. Spudich J. A.
    (1993) Dictyostelium myosin heavy chain phosphorylation sites regulate myosin filament assembly and localization in vivo. Cell 75, 363–371
    OpenUrlCrossRefPubMedWeb of Science
    1. Field C. M.,
    2. Alberts B. A.
    (1995) Anillin, a contractile ring protein that cycles from the nucleus to the cell cortex. J. Cell Biol 131, 165–178
    OpenUrlAbstract/FREE Full Text
    1. Fishkind D. J.,
    2. Silverman J. D.,
    3. Wang Y. L.
    (1996) Function of spindle microtubules in directing cortical movement and actin filament organization in dividing cultured cells. J. Cell Sci 109, 2041–2051
    OpenUrlAbstract/FREE Full Text
    1. Foe V. E.,
    2. Alberts B. M.
    (1983) Studies of nuclear and cytoplasmic behaviour during the five mitotic cycles that precede gastrulation in Drosophila embryogenesis. J. Cell Sci 61, 31–70
    OpenUrlAbstract/FREE Full Text
    1. Foe V. E.,
    2. Alberts B. M.
    (1985) Reversible chromosome condensation induced in Drosophila embryos by anoxia: visualization of interphase nuclear organization. J. Cell Biol 100, 1623–1636
    OpenUrlAbstract/FREE Full Text
    1. Hay B.,
    2. Jan L. Y.,
    3. Jan Y. N.
    (1988) A protein component of Drosophila polar granules is encoded by vasa and has extensive sequence similarity to ATP-dependent helicases. Cell 55, 577–587
    OpenUrlCrossRefPubMedWeb of Science
    1. Henson J. H.,
    2. Begg D. A.,
    3. Beaulieu S. M.,
    4. Fishkind D. J.,
    5. Bonder E. M.,
    6. Terasaki M.,
    7. Lebeche D.,
    8. Kaminer B.
    (1989) A calsequestrin-like protein in the endoplasmic reticulum of the sea urchin: localization and dynamics in the egg and first cell cycle embryo. J. Cell Biol 109, 149–161
    OpenUrlAbstract/FREE Full Text
    1. Heuer J. G.,
    2. Li K.,
    3. Kaufman T. C.
    (1995) The Drosophila homeotic target gene centrosomin (cnn) encodes a novel centrosomal protein with leucine zippers and maps to a genomic region required for midgut morphogenesis. Development 121, 3861–3876
    OpenUrlAbstract
    1. Horwitz S. B.,
    2. Lothstein L.,
    3. Manfredi J. J.,
    4. Mellado W.,
    5. Parness J.,
    6. Roy S. N.,
    7. Schiff P. B.,
    8. Sorbara L.,
    9. Zeheb R.
    (1986) Taxol: mechanisms of action and resistance. Ann. NY Acad. Sci 466, 733–744
    OpenUrlPubMedWeb of Science
    1. Huang J. D.,
    2. Brady S. T.,
    3. Richards B. W.,
    4. Stenolen D.,
    5. Resau J. H.,
    6. Copeland N. G.,
    7. Jenkins N. A.
    (1999) Direct interaction of microtubule-and actin-based transport motors [see comments]. Nature 397, 267–270
    OpenUrlCrossRefPubMedWeb of Science
    1. Jordan P.,
    2. Karess R.
    (1997) Myosin light chain-activating phosphorylation sites are required for oogenesis in Drosophila. J. Cell Biol 139, 1805–1819
    OpenUrlAbstract/FREE Full Text
    1. Kalmes A.,
    2. Merdes G.,
    3. Neumann B.,
    4. Strand D.,
    5. Mechler B. M.
    (1996) A serine-kinase associated with the p127-l(2)gl tumour suppressor of Drosophila may regulate the binding of p127 to nonmuscle myosin II heavy chain and the attachment of p127 to the plasma membrane. J. Cell Sci 109, 1359–1368
    OpenUrlAbstract/FREE Full Text
    1. Karr T. L.,
    2. Alberts B. M.
    (1986) Organization of the cytoskeleton in early Drosophila embryos. J. Cell Biol 102, 1494–1509
    OpenUrlAbstract/FREE Full Text
    1. Kellogg D. R.,
    2. Mitchison T. J.,
    3. Alberts B. M.
    (1988) Behavior of microtubules and actin filaments in living Drosophila embryos. Development 103, 675–686
    OpenUrlAbstract/FREE Full Text
    1. Ketchum A. S.,
    2. Stewart C. T.,
    3. Stewart M.,
    4. Kiehart D. P.
    (1990) Complete sequence of the Drosophila nonmuscle myosin heavy-chain transcript: conserved sequences in the myosin tail and differential splicing in the 5′ untranslated sequence. Proc. Natl Acad. Sci. USA 87, 6316–6320
    OpenUrlAbstract/FREE Full Text
    1. Kiehart D. P.,
    2. Feghali R.
    (1986) Cytoplasmic myosin from Drosophila melanogaster. J. Cell Biol 103, 1517–1525
    OpenUrlAbstract/FREE Full Text
    1. Lajoie-Mazenc I.,
    2. Tollon Y.,
    3. Detraves C.,
    4. Julian M.,
    5. Moisand A.,
    6. Gueth-Hallonet C.,
    7. Debec A.,
    8. Salles-Passador I.,
    9. Puget A.,
    10. Mazarguil H.
    (1994) Recruitment of antigenic gamma-tubulin during mitosis in animal cells: presence of gamma-tubulin in the mitotic spindle. J. Cell Sci 107, 2825–2837
    OpenUrlAbstract/FREE Full Text
    1. Larabell C. A.,
    2. Rowning B. A.,
    3. Wells J.,
    4. Wu M.,
    5. Gerhart J. C.
    (1996) Confocal microscopy analysis of living Xenopus eggs and the mechanism of cortical rotation. Development 122, 1281–1289
    OpenUrlAbstract
    1. Li K.,
    2. Kaufman T. C.
    (1996) The homeotic target gene centrosomin encodes an essential centrosomal component. Cell 85, 585–596
    OpenUrlCrossRefPubMedWeb of Science
    1. Liang W.,
    2. Warrick H. M.,
    3. Spudich J. A.
    (1999) A structural model for phosphorylation control of Dictyostelium myosin II thick filament assembly. J. Cell Biol 147, 1039–1048
    OpenUrlAbstract/FREE Full Text
    1. Mabuchi I.
    (1986) Biochemical aspects of cytokinesis. Int. Rev. Cytol 101, 175–213
    OpenUrlCrossRefPubMedWeb of Science
    1. Matthies H. J.,
    2. McDonald H. B.,
    3. Goldstein L. S.,
    4. Theurkauf W. E.
    (1996) Anastral meiotic spindle morphogenesis: role of the non-claret disjunctional kinesin-like protein. J. Cell Biol 134, 455–464
    OpenUrlAbstract/FREE Full Text
    1. Megraw T. L.,
    2. Li K.,
    3. Kao L. R.,
    4. Kaufman T. C.
    (1999) The centrosomin protein is required for centrosome assembly and function during cleavage in Drosophila. Development 126, 2829–2839
    OpenUrlAbstract
    1. Miller K. G.,
    2. Field C. M.,
    3. Alberts B. M.
    (1989) Actin-binding proteins from Drosophila embryos: a complex network of interacting proteins detected by F-actin affinity chromatography. J. Cell Biol 109, 2963–2975
    OpenUrlAbstract/FREE Full Text
    1. Miller K. G.,
    2. Field C. M.,
    3. Alberts B. M.,
    4. Kellogg D. R.
    (1991) Use of actin filament and microtubule affinity chromatography to identify proteins that bind to the cytoskeleton. Methods Enzymol 196, 303–319
    OpenUrlCrossRefPubMedWeb of Science
    1. Miller K. G.,
    2. Kiehart D. P.
    (1995) Fly division. J. Cell Biol 131, 1–5
    OpenUrlFREE Full Text
    1. Neufeld T. P.,
    2. Rubin G. M.
    (1994) The Drosophila peanut gene is required for cytokinesis and encodes a protein similar to yeast putative bud neck filament proteins. Cell 77, 371–379
    OpenUrlCrossRefPubMedWeb of Science
    1. Nigg E. A.
    (1998) Polo-like kinases: positive regulators of cell division from start to finish. Curr. Opin. Cell Biol 10, 776–783
    OpenUrlCrossRefPubMedWeb of Science
    1. Pasternak C.,
    2. Flicker P. F.,
    3. Ravid S.,
    4. Spudich J. A.
    (1989) Intermolecular versus intramolecular interactions of Dictyostelium myosin: possible regulation by heavy chain phosphorylation. J. Cell Biol 109, 203–210
    OpenUrlAbstract/FREE Full Text
    1. Peskin C. S.,
    2. Odell G. M.,
    3. Oster G. F.
    (1993) Cellular motions and thermal fluctuations: the Brownian ratchet. Biophys J 65, 316–324
    OpenUrlCrossRefPubMedWeb of Science
    1. Pollard T. D.,
    2. Satterwhite L.,
    3. Cisek L.,
    4. Corden J.,
    5. Sato M.,
    6. Maupin P.
    (1990) Actin and myosin biochemistry in relation to cytokinesis. Ann. NY Acad. Sci 582, 120–130
    OpenUrlCrossRefPubMed
    1. Postner M. A.,
    2. Miller K. G.,
    3. Wieschaus E. F.
    (1992) Maternal effect mutations of the sponge locus affect actin cytoskeletal rearrangements in Drosophila melanogaster embryos. J. Cell Biol 119, 1205–1218
    OpenUrlAbstract/FREE Full Text
    1. Raff J. W.,
    2. Glover D. M.
    (1988) Nuclear and cytoplasmic mitotic cycles continue in Drosophila embryos in which DNA synthesis is inhibited with aphidicolin. J. Cell Biol 107, 2009–2019
    OpenUrlAbstract/FREE Full Text
    1. Rankin S.,
    2. Kirschner M. W.
    (1997) The surface contraction waves of Xenopus eggs reflect the metachronous cell-cycle state of the cytoplasm. Curr. Biol 7, 451–454
    OpenUrlCrossRefPubMedWeb of Science
    1. Rothwell W. F.,
    2. Fogarty P.,
    3. Field C. M.,
    4. Sullivan W.
    (1998) Nuclear-fallout, a Drosophila protein that cycles from the cytoplasm to the centrosomes, regulates cortical microfilament organization. Development 125, 1295–1303
    OpenUrlAbstract
    1. Sabry J. H.,
    2. Moores S. L.,
    3. Ryan S.,
    4. Zang J. H.,
    5. Spudich J. A.
    (1997) Myosin heavy chain phosphorylation sites regulate myosin localization during cytokinesis in live cells. Mol. Biol. Cell 8, 2605–2615
    OpenUrlAbstract/FREE Full Text
    1. Satterwhite L. L.,
    2. Lohka M. J.,
    3. Wilson K. L.,
    4. Scherson T. Y.,
    5. Cisek L. J.,
    6. Corden J. L.,
    7. Pollard T. D.
    (1992) Phosphorylation of myosin-II regulatory light chain by cyclin-p34cdc2: a mechanism for the timing of cytokinesis. J. Cell Biol 118, 595–605
    OpenUrlAbstract/FREE Full Text
    1. Schejter E. D.,
    2. Wieschaus E.
    (1993) Functional elements of the cytoskeleton in the early Drosophila embryo. Annu. Rev. Cell Biol 9, 67–99
    OpenUrlCrossRef
    1. Schroeder T. E.
    (1981) The origin of cleavage forces in dividing eggs. A mechanism in two steps. Exp. Cell Res 134, 231–240
    OpenUrlCrossRefPubMed
    1. Schupbach T.,
    2. Wieschaus E.
    (1989) Female sterile mutations on the second chromosome of Drosophila melanogaster. I. Maternal effect mutations. Genetics 121, 101–117
    OpenUrlAbstract/FREE Full Text
    1. Sider J. R.,
    2. Mandato C. A.,
    3. Weber K. L.,
    4. Zandy A. J.,
    5. Beach D.,
    6. Finst R. J.,
    7. Skoble J.,
    8. Bement W. M.
    (1999) Direct observation of microtubule-f-actin interaction in cell free lysates. J. Cell Sci 112, 1947–1956
    OpenUrlAbstract/FREE Full Text
    1. Smith D. B.,
    2. Johnson K. S.
    (1988) Single-step purification of polypeptides expressed in Escherichia coli as fusions with glutathione S-transferase. Gene 67, 31–40
    OpenUrlCrossRefPubMedWeb of Science
    1. Strand D.,
    2. Jakobs R.,
    3. Merdes G.,
    4. Neumann B.,
    5. Kalmes A.,
    6. Heid H. W.,
    7. Husmann I.,
    8. Mechler B. M.
    (1994) The Drosophila lethal(2)giant larvae tumor suppressor protein forms homo-oligomers and is associated with nonmuscle myosin II heavy chain. J. Cell Biol 127, 1361–1373
    OpenUrlAbstract/FREE Full Text
    1. Sullivan W.,
    2. Minden J. S.,
    3. Alberts B. M.
    (1990) daughterless-abo-like, a Drosophila maternal-effect mutation that exhibits abnormal centrosome separation during the late blastoderm divisions. Development 110, 311–323
    OpenUrlAbstract/FREE Full Text
    1. Theriot J. A.,
    2. Mitchison T. J.
    (1992) Comparison of actin and cell surface dynamics in motile fibroblasts. J. Cell Biol 119, 367–377
    OpenUrlAbstract/FREE Full Text
    1. Tsukita S.,
    2. Yonemura S.
    (1997) ERM proteins: head-to-tail regulation of actin-plasma membrane interaction. Trends Biochem. Sci 22, 53–58
    OpenUrlCrossRefPubMedWeb of Science
    1. Vaizel-Ohayon D.,
    2. Schejter E. D.
    (1999) Mutations in centrosomin reveal requirements for centrosomal function during early Drosophila embryogenesis. Curr. Biol 9, 889–898
    OpenUrlCrossRefPubMedWeb of Science
    1. Vincent J. P.,
    2. Gerhart J. C.
    (1987) Subcortical rotation in Xenopus eggs: an early step in embryonic axis specification. Dev. Biol 123, 526–539
    OpenUrlCrossRefPubMedWeb of Science
    1. von Dassow G.,
    2. Schubiger G.
    (1994) How an actin network might cause fountain streaming and nuclear migration in the syncytial Drosophila embryo [published erratum appears in J. Cell Biol. 1995 Sep;130(5):1231-4]. J. Cell Biol 127, 1637–1653
    OpenUrlAbstract/FREE Full Text
    1. Wang Y.,
    2. Silverman J. D.,
    3. Cao L.
    (1994) Single particle tracking of surface receptor movement during cell division. J. Cell Biol 127, 963–971
    OpenUrlAbstract/FREE Full Text
    1. Warn R. M.,
    2. Magrath R.,
    3. Webb S.
    (1984) Distribution of F-actin during cleavage of the Drosophila syncytial blastoderm. J. Cell Biol 98, 156–162
    OpenUrlAbstract/FREE Full Text
    1. Waterman-Storer C. M.,
    2. Salmon E.
    (1999) Positive feedback interactions between microtubule and actin dynamics during cell motility. Curr. Opin. Cell Biol 11, 61–67
    OpenUrlCrossRefPubMedWeb of Science
    1. Wheatley S. P.,
    2. Wang Y.
    (1996) Midzone microtubule bundles are continuously required for cytokinesis in cultured epithelial cells. J. Cell Biol 135, 981–989
    OpenUrlAbstract/FREE Full Text
    1. White J. G.,
    2. Borisy G. G.
    (1983) On the mechanisms of cytokinesis in animal cells. J. Theor. Biol 101, 289–316
    OpenUrlCrossRefPubMedWeb of Science
    1. Wolpert L.
    (1960) The mechanics and mechanism of cleavage. Int. Rev. Cytol 10, 163–216
    OpenUrl
    1. Yamakita Y.,
    2. Yamashiro S.,
    3. Matsumura F.
    (1994) In vivo phosphorylation of regulatory light chain of myosin II during mitosis of cultured cells. J. Cell Biol 124, 129–137
    OpenUrlAbstract/FREE Full Text
    1. Yasuda G. K.,
    2. Baker J.,
    3. Schubiger G.
    (1991) Independent roles of centrosomes and DNA in organizing the Drosophila cytoskeleton. Development 111, 379–391
    OpenUrlAbstract
    1. Yumura S.,
    2. Uyeda T. Q.
    (1997) Transport of myosin II to the equatorial region without its own motor activity in mitotic Dictyostelium cells. Mol. Biol. Cell 8, 2089–2099
    OpenUrlAbstract/FREE Full Text
    1. Yumura S.,
    2. Uyeda T. Q.
    (1997) Myosin II can be localized to the cleavage furrow and to the posterior region of Dictyostelium amoebae without control by phosphorylation of myosin heavy and light chains. Cell Motil. Cytoskeleton 36, 313–322
    OpenUrlCrossRefPubMedWeb of Science
    1. Zang J. H.,
    2. Spudich J. A.
    (1998) Myosin II localization during cytokinesis occurs by a mechanism that does not require its motor domain. Proc. Natl. Acad. Sci.USA 95, 13652–13657
    OpenUrlAbstract/FREE Full Text
Previous ArticleNext Article
Back to top
Previous ArticleNext Article

This Issue

 Download PDF

Email

Thank you for your interest in spreading the word on Development.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Microtubules and mitotic cycle phase modulate spatiotemporal distributions of F-actin and myosin II in Drosophila syncytial blastoderm embryos
(Your Name) has sent you a message from Development
(Your Name) thought you would like to see the Development web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
JOURNAL ARTICLES
Microtubules and mitotic cycle phase modulate spatiotemporal distributions of F-actin and myosin II in Drosophila syncytial blastoderm embryos
V.E. Foe, C.M. Field, G.M. Odell
Development 2000 127: 1767-1787;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Citation Tools
JOURNAL ARTICLES
Microtubules and mitotic cycle phase modulate spatiotemporal distributions of F-actin and myosin II in Drosophila syncytial blastoderm embryos
V.E. Foe, C.M. Field, G.M. Odell
Development 2000 127: 1767-1787;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Alerts

Please log in to add an alert for this article.

Sign in to email alerts with your email address

Article navigation

  • Top
  • Article
  • Figures & tables
  • Supp info
  • Info & metrics
  • PDF

Related articles

Cited by...

More in this TOC section

  • Groucho augments the repression of multiple Even skipped target genes in establishing parasegment boundaries
  • Axial skeletal patterning in mice lacking all paralogous group 8 Hox genes
  • Morphogenetic cell movements in the middle region of the dermomyotome dorsomedial lip associated with patterning and growth of the primary epaxial myotome
Show more JOURNAL ARTICLES

Similar articles

Other journals from The Company of Biologists

Journal of Cell Science

Journal of Experimental Biology

Disease Models & Mechanisms

Biology Open

Advertisement

A new society for regenerative biologists

Kenneth Poss and Elly Tanaka announce the launch of the International Society for Regenerative Biology (ISRB), which will promote research and education in the field of regenerative biology.


Upcoming special issue: call for papers

The Immune System in Development and Regeneration
Guest editors: Florent Ginhoux and Paul Martin
Submission deadline: 1 September 2021
Publication: Spring 2022

The special issue welcomes Review articles as well as Research articles, and will be widely promoted online and at key global conferences.


An interview with Cagney Coomer

Over a virtual chat, we spoke to Cagney Coomer about her experiences in the lab, the classroom and the community centre, and why she thinks outreach and role models are vital to science.


Development presents...

Our successful webinar series continues into 2021, with early-career researchers presenting their papers and a chance to virtually network with the developmental biology community afterwards. Here, Michèle Romanos talks about her new preprint, which mixes experimentation in quail embryos and computational modelling to understand how heterogeneity in a tissue influences cell rate.

Save your spot at our next session:

10 March
Time: 9:00 (GMT)
Chaired by: Thomas Lecuit

Join our mailing list to receive news and updates on the series.

Articles

  • Accepted manuscripts
  • Issue in progress
  • Latest complete issue
  • Issue archive
  • Archive by article type
  • Special issues
  • Subject collections
  • Sign up for alerts

About us

  • About Development
  • About the Node
  • Editors and board
  • Editor biographies
  • Travelling Fellowships
  • Grants and funding
  • Journal Meetings
  • Workshops
  • The Company of Biologists

For authors

  • Submit a manuscript
  • Aims and scope
  • Presubmission enquiries
  • Article types
  • Manuscript preparation
  • Cover suggestions
  • Editorial process
  • Promoting your paper
  • Open Access
  • Biology Open transfer

Journal info

  • Journal policies
  • Rights and permissions
  • Media policies
  • Reviewer guide
  • Sign up for alerts

Contact

  • Contact Development
  • Subscriptions
  • Advertising
  • Feedback
  • Institutional usage stats (logged-in users only)

 Twitter   YouTube   LinkedIn

© 2021   The Company of Biologists Ltd   Registered Charity 277992