Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Sign up for alerts
  • About us
    • About Development
    • About the Node
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contacts
    • Subscriptions
    • Advertising
    • Feedback
    • For library administrators
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

User menu

  • Log in
  • Log out

Search

  • Advanced search
Development
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

supporting biologistsinspiring biology

Development

  • Log in
Advanced search

RSS  Twitter  Facebook  YouTube 

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Sign up for alerts
  • About us
    • About Development
    • About the Node
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contacts
    • Subscriptions
    • Advertising
    • Feedback
    • For library administrators
JOURNAL ARTICLES
Integration of FGF and TWIST in calvarial bone and suture development
D.P. Rice, T. Aberg, Y. Chan, Z. Tang, P.J. Kettunen, L. Pakarinen, R.E. Maxson, I. Thesleff
Development 2000 127: 1845-1855;
D.P. Rice
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
T. Aberg
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Y. Chan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Z. Tang
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
P.J. Kettunen
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
L. Pakarinen
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
R.E. Maxson
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
I. Thesleff
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & metrics
  • PDF
Loading

Summary

Mutations in the FGFR1-FGFR3 and TWIST genes are known to cause craniosynostosis, the former by constitutive activation and the latter by haploinsufficiency. Although clinically achieving the same end result, the premature fusion of the calvarial bones, it is not known whether these genes lie in the same or independent pathways during calvarial bone development and later in suture closure. We have previously shown that Fgfr2c is expressed at the osteogenic fronts of the developing calvarial bones and that, when FGF is applied via beads to the osteogenic fronts, suture closure is accelerated (Kim, H.-J., Rice, D. P. C., Kettunen, P. J. and Thesleff, I. (1998) Development 125, 1241–1251). In order to investigate further the role of FGF signalling during mouse calvarial bone and suture development, we have performed detailed expression analysis of the splicing variants of Fgfr1-Fgfr3 and Fgfr4, as well as their potential ligand Fgf2. The IIIc splice variants of Fgfr1-Fgfr3 as well as the IIIb variant of Fgfr2 being expressed by differentiating osteoblasts at the osteogenic fronts (E15). In comparison to Fgf9, Fgf2 showed a more restricted expression pattern being primarily expressed in the sutural mesenchyme between the osteogenic fronts. We also carried out a detailed expression analysis of the helix-loop-helix factors (HLH) Twist and Id1 during calvaria and suture development (E10-P6). Twist and Id1 were expressed by early preosteoblasts, in patterns that overlapped those of the FGF ligands, but as these cells differentiated their expression dramatically decreased. Signalling pathways were further studied in vitro, in E15 mouse calvarial explants. Beads soaked in FGF2 induced Twist and inhibited Bsp, a marker of functioning osteoblasts. Meanwhile, BMP2 upregulated Id1. Id1 is a dominant negative HLH thought to inhibit basic HLH such as Twist. In Drosophila, the FGF receptor FR1 is known to be downstream of Twist. We demonstrated that in Twist(+/)(−) mice, FGFR2 protein expression was altered. We propose a model of osteoblast differentiation integrating Twist and FGF in the same pathway, in which FGF acts both at early and late stages. Disruption of this pathway may lead to craniosynostosis.

REFERENCES

    1. Bate M.,
    2. Rushton E.,
    3. Currie D. A.
    (1991) Cells with persistent twist expression are the embryonic precursors of adult muscles in Drosophila. Development 113, 79–89
    OpenUrlAbstract
    1. Bellus G. A.,
    2. Gaudenz K.,
    3. Zackai E. H.,
    4. Clarke L. A.,
    5. Szabo J.,
    6. Francomano C. A.,
    7. Muenke M.
    (1996) Identical mutations in three different fibroblast growth factor receptor genes in autosomal dominant craniosynostosis syndromes. Nature Genet 14, 174–176
    OpenUrlCrossRefPubMedWeb of Science
    1. Benezra R.,
    2. Davis R. L.,
    3. Lockshon D.,
    4. Turner D. L.,
    5. Weintraub H.
    (1990) The protein Id: a negative regulator of helix-loop-helix DNA binding proteins. Cell 61, 49–59
    OpenUrlCrossRefPubMedWeb of Science
    1. Bianco P.,
    2. Fisher L. W.,
    3. Young M. F.,
    4. Termine J. D.,
    5. Robey P. G.
    (1991) Expression of bone sialoprotein (BSP) in developing human tissues. Calcif. Tissue Int 49, 421–426
    OpenUrlCrossRefPubMedWeb of Science
    1. Bourgeois P.,
    2. Bolcato-Bellemin A. L.,
    3. Danse J. M.,
    4. Bloch-Zupan A.,
    5. Yoshiba K.,
    6. Stoetzel C.,
    7. Perrin-Schmitt F.
    (1998) The variable expressivity and incomplete penetrance of the twist-null heterozygous mouse phenotype resemble those of human Saethre-Chotzen syndrome. Hum. Mol. Genet 7, 945–957
    OpenUrlAbstract/FREE Full Text
    1. Canalis E.,
    2. Raisz L. G.
    (1980) Effect of fibroblast growth factor on cultured fetal rat calvaria. Metabolism: Clinical & Experimental 29, 108–114
    OpenUrlCrossRefPubMedWeb of Science
    1. Carlton M. B.,
    2. Colledge W. H.,
    3. Evans M. J.
    (1998) Crouzon-like craniofacial dysmorphology in the mouse is caused by an insertional mutation at the Fgf3/Fgf4 locus. Dev. Dyn 212, 242–249
    OpenUrlCrossRefPubMedWeb of Science
    1. Chen J. K.,
    2. Shapiro H. S.,
    3. Wrana J. L.,
    4. Reimers S.,
    5. Heersche J. N.,
    6. Sodek J.
    (1991) Localization of bone sialoprotein (BSP) expression to sites of mineralized tissue formation in fetal rat tissues by in situ hybridization. Matrix 11, 133–143
    OpenUrlCrossRefPubMedWeb of Science
    1. Chen Z. F.,
    2. Behringer R. R.
    (1995) Twist is required in head mesenchyme for cranial neural tube morphogenesis. Genes Dev 9, 686–699
    OpenUrlAbstract/FREE Full Text
    1. Coffin J. D.,
    2. Florkiewicz R. Z.,
    3. Neumann J.,
    4. Mort-Hopkins T.,
    5. Dorn G. W., 2nd,
    6. Lightfoot P.,
    7. German R.,
    8. Howles P. N.,
    9. Kier A.,
    10. O'Toole B. A.,
    11. et al.
    (1995) Abnormal bone growth and selective translational regulation in basic fibroblast growth factor (FGF-2) transgenic mice. Mol. Biol. Cell 6, 1861–1873
    OpenUrlAbstract/FREE Full Text
    1. Colvin J. S.,
    2. Bohne B. A.,
    3. Harding G. W.,
    4. McEwen D. G.,
    5. Ornitz D. M.
    (1996) Skeletal overgrowth and deafness in mice lacking fibroblast growth factor receptor 3. Nat. Genet 12, 390–397
    OpenUrlCrossRefPubMedWeb of Science
    1. Debiais F.,
    2. Hott M.,
    3. Graulet A. M.,
    4. Marie P. J.
    (1998) The effects of fibroblast growth factor-2 on human neonatal calvaria osteoblastic cells are differentiation stage specific. J. Bone Miner. Res 13, 645–654
    OpenUrlCrossRefPubMedWeb of Science
    1. Delezoide A. L.,
    2. Benoist-Lasselin C.,
    3. Legeai-Mallet L.,
    4. Le Merrer M.,
    5. Munnich A.,
    6. Vekemans M.,
    7. Bonaventure J.
    (1998) Spatio-temporal expression of FGFR 1, 2 and 3 genes during human embryo-fetal ossification. Mech. Dev 77, 19–30
    OpenUrlCrossRefPubMedWeb of Science
    1. Deng C. X.,
    2. Wynshaw-Boris A.,
    3. Shen M. M.,
    4. Daugherty C.,
    5. Ornitz D. M.,
    6. Leder P.
    (1994) Murine FGFR-1 is required for early postimplantation growth and axial organization. Genes Dev 8, 3045–3057
    OpenUrlAbstract/FREE Full Text
    1. Deng C.,
    2. Wynshaw-Boris A.,
    3. Zhou F.,
    4. Kuo A.,
    5. Leder P.
    (1996) Fibroblast growth factor receptor 3 is a negative regulator of bone growth. Cell 84, 911–921
    OpenUrlCrossRefPubMedWeb of Science
    1. El Ghouzzi V.,
    2. Le Merrer M.,
    3. Perrin-Schmitt F.,
    4. Lajeunie E.,
    5. Benit P.,
    6. Renier D.,
    7. Bourgeois P.,
    8. Bolcato-Bellemin A. L.,
    9. Munnich A.,
    10. Bonaventure J.
    (1997) Mutations of the TWIST gene in the Saethre-Chotzen syndrome. Nature Genet 15, 42–46
    OpenUrlCrossRefPubMedWeb of Science
    1. Fuchtbauer E. M.
    (1995) Expression of M-twist during postimplantation development of the mouse. Dev. Dyn 204, 316–322
    OpenUrlCrossRefPubMedWeb of Science
    1. Galvin B. D.,
    2. Hart K. C.,
    3. Meyer A. N.,
    4. Webster M. K.,
    5. Donoghue D. J.
    (1996) Constitutive receptor activation by Crouzon syndrome mutations in fibroblast growth factor receptor (FGFR)2 and FGFR2/Neu chimeras. Proc. Natl Acad. Sci. USA 93, 7894–7899
    OpenUrlAbstract/FREE Full Text
    1. Hebrok M.,
    2. Wertz K.,
    3. Fuchtbauer E. M.
    (1994) M-twist is an inhibitor of muscle differentiation. Dev. Biol 165, 537–544
    OpenUrlCrossRefPubMedWeb of Science
    1. Heinrichs A. A.,
    2. Banerjee C.,
    3. Bortell R.,
    4. Owen T. A.,
    5. Stein J. L.,
    6. Stein G. S.,
    7. Lian J. B.
    (1993) Identification and characterization of two proximal elements in the rat osteocalcin gene promoter that may confer species-specific regulation. J. Cell Biochem 53, 240–250
    OpenUrlCrossRefPubMed
    1. Hodgkinson J. E.,
    2. Davidson C. L.,
    3. Beresford J.,
    4. Sharpe P. T.
    (1993) Expression of a human homeobox-containing gene is regulated by 1,25(OH)2D3 in bone cells. Biochim Biophys Acta 1174, 11–16
    OpenUrlPubMed
    1. Hoffmann H. M.,
    2. Beumer T. L.,
    3. Rahman S.,
    4. McCabe L. R.,
    5. Banerjee C.,
    6. Aslam F.,
    7. Tiro J. A.,
    8. van Wijnen A. J.,
    9. Stein J. L.,
    10. Stein G. S.,
    11. Lian J. B.
    (1996) Bone tissue-specific transcription of the osteocalcin gene: role of an activator osteoblast-specific complex and suppressor hox proteins that bind the OC box. J. Cell Biochem 61, 310–324
    OpenUrlCrossRefPubMed
    1. Howard T. D.,
    2. Paznekas W. A.,
    3. Green E. D.,
    4. Chiang L. C.,
    5. Ma N.,
    6. Ortiz de Luna R. I.,
    7. Garcia Delgado C.,
    8. Gonzalez-Ramos M.,
    9. Kline A. D.,
    10. Jabs E. W.
    (1997) Mutations in TWIST, a basic helix-loop-helix transcription factor, in Saethre-Chotzen syndrome. Nat. Genet 15, 36–41
    OpenUrlCrossRefPubMedWeb of Science
    1. Iseki S.,
    2. Wilkie A. O. M.,
    3. Heath J. K.,
    4. Ishimaru T.,
    5. Eto K.,
    6. Morriss-Kay G.
    (1997) Fgfr2 and Osteopontin domains in the developing skull vault are mutually exclusive and can be altered by locally applied FGF2. Development 124, 3375–3384
    OpenUrlAbstract
    1. Jabs E. W.,
    2. Muller U.,
    3. Li X.,
    4. Ma L.,
    5. Luo W.,
    6. Haworth I. S.,
    7. Klisak I.,
    8. Sparkes R.,
    9. Warman M. L.,
    10. Mulliken J. B.,
    11. et al.
    (1993) A mutation in the homeodomain of the human MSX2 gene in a family affected with autosomal dominant craniosynostosis. Cell 75, 443–450
    OpenUrlCrossRefPubMedWeb of Science
    1. Jabs E. W.,
    2. Li X.,
    3. Scott A. F.,
    4. Meyers G.,
    5. Chen W.,
    6. Eccles M.,
    7. Mao J. I.,
    8. Charnas L. R.,
    9. Jackson C. E.,
    10. Jaye M.
    (1994) Jackson-Weiss and Crouzon syndromes are allelic with mutations in fibroblast growth factor receptor 2. Nature Genet 8, 275–279
    OpenUrlCrossRefPubMedWeb of Science
    1. Jen Y.,
    2. Manova K.,
    3. Benezra R.
    (1996) Expression patterns of Id1, Id2, and Id3 are highly related but distinct from that of Id4 during mouse embryogenesis. Dev. Dyn 207, 235–252
    OpenUrlCrossRefPubMedWeb of Science
    1. Karsenty G.
    (1998) Genetics of skeletogenesis. Dev. Genet 22, 301–313
    OpenUrlCrossRefPubMedWeb of Science
    1. Katagiri T.,
    2. Yamaguchi A.,
    3. Komaki M.,
    4. Abe E.,
    5. Takahashi N.,
    6. Ikeda T.,
    7. Rosen V.,
    8. Wozney J. M.,
    9. Fujisawa-Sehara A.,
    10. Suda T.
    (1994) Bone morphogenetic protein-2 converts the differentiation pathway of C2C12 myoblasts into the osteoblast lineage. J. Cell Biol 127, 1755–1766
    OpenUrlAbstract/FREE Full Text
    1. Kawaguchi N.,
    2. DeLuca H. F.,
    3. Noda M.
    (1992) Id gene expression and its suppression by 1,25-dihydroxyvitamin D3 in rat osteoblastic osteosarcoma cells. Proc. Natl Acad. Sci. USA 89, 4569–4572
    OpenUrlAbstract/FREE Full Text
    1. Kettunen P.,
    2. Karavanova I.,
    3. Thesleff I.
    (1998) Responsiveness of developing dental tissues to fibroblast growth factor—expression of splicing alternatives of FGFR1,-2,-3, and FGFR4—and stimulation of cell proliferation by FGF-2,-4,-8, and-9. Dev Gen 22, 374–385
    OpenUrlCrossRefPubMedWeb of Science
    1. Kim H.-J.,
    2. Rice D. P. C.,
    3. Kettunen P. J.,
    4. Thesleff I.
    (1998) FGF-, BMP-and Shh-mediated signalling pathways in the regulation of cranial suture morphogenesis and calvarial bone development. Development 125, 1241–1251
    OpenUrlAbstract
    1. Liu Y.-H.,
    2. Tang Z.,
    3. Kundu R. K.,
    4. Wu L.,
    5. Luo W.,
    6. Zhu D.,
    7. Sangiorgi F.,
    8. Snead M. L.,
    9. Maxson R. E.
    (1999) Msx2 gene dosage influences the number of proliferative osteogenic cells in growth centers of the developing murine skull: a possible mechanism for MSX2-mediated craniosynostosis in humans. Dev Biol 205, 260–274
    OpenUrlCrossRefPubMedWeb of Science
    1. Mackenzie A.,
    2. Ferguson M. W. J.,
    3. Sharpe P. T.
    (1992) Expression patterns of the homeobox gene, Hox-8, in the mouse embryo suggest a role in specifying tooth initiation and shape. Development 115, 403–420
    OpenUrlAbstract
    1. Malaval L.,
    2. Liu F.,
    3. Roche P.,
    4. Aubin J. E.
    (1999) Kinetics of osteoprogenitor proliferation and osteoblast differentiation in vitro. J. Cell Biochem 74, 616–627
    OpenUrlCrossRefPubMedWeb of Science
    1. McMahon A. P.,
    2. Champion J. E.,
    3. McMahon J. A.,
    4. Sukhatme V. P.
    (1990) Developmental expression of the putative transcription factor Egr-1 suggests that Egr-1 and c-fos are coregulated in some tissues. Development 108, 281–287
    OpenUrlAbstract
    1. Mangasarian K.,
    2. Li Y.,
    3. Mansukhani A.,
    4. Basilico C.
    (1997) Mutation associated with Crouzon syndrome causes ligand-independent dimerization and activation of FGF receptor-2. J. Cell Physiol 172, 117–125
    OpenUrlCrossRefPubMedWeb of Science
    1. Muenke M.,
    2. Schell U.,
    3. Hehr A.,
    4. Robin N. H.,
    5. Losken H. W.,
    6. Schinzel A.,
    7. Pulleyn L. J.,
    8. Rutland P.,
    9. Reardon W.,
    10. Malcolm S.,
    11. et al.
    (1994) A common mutation in the fibroblast growth factor receptor 1 gene in Pfeiffer syndrome. Nature Genet 8, 269–273
    OpenUrlCrossRefPubMedWeb of Science
    1. Murray S. S.,
    2. Glackin C. A.,
    3. Winters K. A.,
    4. Gazit D.,
    5. Kahn A. J.,
    6. Murray E. J.
    (1992) Expression of helix-loop-helix regulatory genes during differentiation of mouse osteoblastic cells. J. Bone Miner. Res 7, 1131–1138
    OpenUrlPubMedWeb of Science
    1. Neilson K. M.,
    2. Friesel R. E.
    (1995) Constitutive activation of fibroblast growth factor receptor-2 by a point mutation associated with Crouzon syndrome. J. Biol. Chem 270, 26037–26040
    OpenUrlAbstract/FREE Full Text
    1. Ogata T.,
    2. Noda M.
    (1991) Expression of Id, a negative regulator of helix-loop-helix DNA binding proteins, is down-regulated at confluence and enhanced by dexamethasone in a mouse osteoblastic cell line, MC3T3E1. Biochem. Biophys. Res. Com 180, 1194–1199
    OpenUrlCrossRefPubMedWeb of Science
    1. Ogata T.,
    2. Wozney J. M.,
    3. Benezra R.,
    4. Noda M.
    (1993) Bone morphogenetic protein 2 transiently enhances expression of a gene, Id (inhibitor of differentiation), encoding a helix-loop-helix molecule in osteoblast-like cells. Proc. Natl Acad. Sci. USA 90, 9219–9222
    OpenUrlAbstract/FREE Full Text
    1. Opperman L.A.,
    2. Chhabra A.,
    3. Nolen A.A.,
    4. Bao Y.,
    5. Ogle R.C.
    (1998) Dura mater maintains rat cranial sutures in vitro by regulating suture cell proliferation and collagen production. J. Craniofac. Genet. Dev. Biol 18, 150–158
    OpenUrlPubMedWeb of Science
    1. Opperman L. A.,
    2. Passarelli R. W.,
    3. Morgan E. P.,
    4. Reintjes M.,
    5. Ogle R. C.
    (1995) Cranial sutures require tissue interactions with dura mater to resist osseous obliteration in vitro. J. Bone Miner. Res 10, 1979–1987
    OpenUrl
    1. Opperman L.A.,
    2. Sweeney T.M.,
    3. Redmon J.,
    4. Persing J.A.,
    5. Ogle R.C.
    (1993) Tissue interactions with underlying dura mater inhibit osseous obliteration of developing cranial sutures. Dev. Dyn 198, 312–322
    OpenUrlCrossRefPubMedWeb of Science
    1. Ornitz D. M.,
    2. Xu J.,
    3. Colvin J. S.,
    4. McEwen D. G.,
    5. MacArthur C. A.,
    6. Coulier F.,
    7. Gao G.,
    8. Goldfarb M.
    (1996) Receptor specificity of the fibroblast growth factor family. J. Biol. Chem 271, 15292–15297
    OpenUrlAbstract/FREE Full Text
    1. Orr-Urtreger A.,
    2. Givol D.,
    3. Yayon A.,
    4. Yarden Y.,
    5. Lonai P.
    (1991) Developmental expression of two murine fibroblast growth factor receptors, flg and bek. Development 113, 1419–1434
    OpenUrlAbstract
    1. Orr-Urtreger A.,
    2. Bedford M. T.,
    3. Burakova T.,
    4. Arman E.,
    5. Zimmer Y.,
    6. Yayon A.,
    7. Givol D.,
    8. Lonai P.
    (1993) Developmental localization of the splicing alternatives of fibroblast growth factor receptor-2 (FGFR2). Dev. Biol 158, 475–486
    OpenUrlCrossRefPubMedWeb of Science
    1. Paznekas W. A.,
    2. Cunningham M. L.,
    3. Howard T. D.,
    4. Korf B. R.,
    5. Lipson M. H.,
    6. Grix A. W.,
    7. Feingold M.,
    8. Goldberg R.,
    9. Borochowitz Z.,
    10. Aleck K.,
    11. et al.
    (1998) Genetic heterogeneity of Saethre-Chotzen syndrome, due to TWIST and FGFR mutations. Am. J. Hum. Genet 62, 1370–1380
    OpenUrlCrossRefPubMedWeb of Science
    1. Pesce S.,
    2. Benezra R.
    (1993) The loop region of the helix-loop-helix protein Id1 is critical for its dominant negative activity. Molec. Cell. Biol 13, 7874–7880
    OpenUrlAbstract/FREE Full Text
    1. Peters K. G.,
    2. Werner S.,
    3. Chen G.,
    4. Williams L. T.
    (1992) Two FGF receptor genes are differentially expressed in epithelial and mesenchymal tissues during limb formation and organogenesis in the mouse. Development 114, 233–243
    OpenUrlAbstract
    1. Rice D. P. C.,
    2. Kim H. J.,
    3. Thesleff I.
    (1997) Detection of gelatinase B expression reveals osteoclastic bone resorption as a feature of early calvarial bone development. Bone 21, 479–486
    OpenUrlPubMed
    1. Satokata I.,
    2. Maas R.
    (1994) Msx1 deficient mice exhibit cleft palate and abnormalities of craniofacial and tooth development. Nature Genet 6, 348–356
    OpenUrlCrossRefPubMedWeb of Science
    1. Shishido E.,
    2. Higashijima S.,
    3. Emori Y.,
    4. Saigo K.
    (1993) Two FGF-receptor homologues of Drosophila: one is expressed in mesodermal primordium in early embryos. Development 117, 751–761
    OpenUrlAbstract
    1. Tamura M.,
    2. Noda M.
    (1994) Identification of a DNA sequence involved in osteoblast-specific gene expression via interaction with helix-loop-helix (HLH)-type transcription factors. J. Cell Biol 126, 773–782
    OpenUrlAbstract/FREE Full Text
    1. Tamura M.,
    2. Noda M.
    (1999) Identification of DERMO-1 as a member of helix-loop-helix type transcription factors expressed in osteoblastic cells. J. Cell Biochem 72, 167–176
    OpenUrlCrossRefPubMedWeb of Science
    1. Vainio S.,
    2. Jalkanen M.,
    3. Vaahtokari A.,
    4. Sahlberg C.,
    5. Mali M.,
    6. Bernfield M.,
    7. Thesleff I.
    (1991) Expression of syndecan gene is induced early, is transient, and correlates with changes in mesenchymal cell proliferation during tooth organogenesis. Dev. Biol 147, 322–333
    OpenUrlCrossRefPubMedWeb of Science
    1. Wilke T. A.,
    2. Gubbels S.,
    3. Schwartz J.,
    4. Richman J. M.
    (1997) Expression of fibroblast growth factor receptors (FGFR1, FGFR2, FGFR3) in the developing head and face. Dev. Dyn 210, 41–52
    OpenUrlCrossRefPubMed
    1. Wilkie A. O. M.
    (1997) Craniosynostosis: genes and mechanisms. Hum. Mol. Genet 6, 1647–1656
    OpenUrlAbstract/FREE Full Text
    1. Wilkie A. O.,
    2. Slaney S. F.,
    3. Oldridge M.,
    4. Poole M. D.,
    5. Ashworth G. J.,
    6. Hockley A. D.,
    7. Hayward R. D.,
    8. David D. J.,
    9. Pulleyn L. J.,
    10. Rutland P.,
    11. et al.
    (1995) Apert syndrome results from localized mutations of FGFR2 and is allelic with Crouzon syndrome. Nature Genet 9, 165–172
    OpenUrlCrossRefPubMedWeb of Science
    1. Xu X.,
    2. Weinstein M.,
    3. Li C.,
    4. Naski M.,
    5. Cohen R. I.,
    6. Ornitz D. M.,
    7. Leder P.,
    8. Deng C.
    (1998) Fibroblast growth factor receptor 2 (FGFR2)-mediated reciprocal regulation loop between FGF8 and FGF10 is essential for limb induction. Development 125, 753–765
    OpenUrlAbstract
    1. Yamaguchi T. P.,
    2. Harpal K.,
    3. Henkemeyer M.,
    4. Rossant J.
    (1994) fgfr-1 is required for embryonic growth and mesodermal patterning during mouse gastrulation. Genes Dev 8, 3032–3044
    OpenUrlAbstract/FREE Full Text
Previous ArticleNext Article
Back to top
Previous ArticleNext Article

This Issue

 Download PDF

Email

Thank you for your interest in spreading the word on Development.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Integration of FGF and TWIST in calvarial bone and suture development
(Your Name) has sent you a message from Development
(Your Name) thought you would like to see the Development web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
JOURNAL ARTICLES
Integration of FGF and TWIST in calvarial bone and suture development
D.P. Rice, T. Aberg, Y. Chan, Z. Tang, P.J. Kettunen, L. Pakarinen, R.E. Maxson, I. Thesleff
Development 2000 127: 1845-1855;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Citation Tools
JOURNAL ARTICLES
Integration of FGF and TWIST in calvarial bone and suture development
D.P. Rice, T. Aberg, Y. Chan, Z. Tang, P.J. Kettunen, L. Pakarinen, R.E. Maxson, I. Thesleff
Development 2000 127: 1845-1855;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Alerts

Please log in to add an alert for this article.

Sign in to email alerts with your email address

Article navigation

  • Top
  • Article
  • Info & metrics
  • PDF

Related articles

Cited by...

More in this TOC section

  • Groucho augments the repression of multiple Even skipped target genes in establishing parasegment boundaries
  • Axial skeletal patterning in mice lacking all paralogous group 8 Hox genes
  • Morphogenetic cell movements in the middle region of the dermomyotome dorsomedial lip associated with patterning and growth of the primary epaxial myotome
Show more JOURNAL ARTICLES

Similar articles

Other journals from The Company of Biologists

Journal of Cell Science

Journal of Experimental Biology

Disease Models & Mechanisms

Biology Open

Advertisement

A new society for regenerative biologists

Kenneth Poss and Elly Tanaka announce the launch of the International Society for Regenerative Biology (ISRB), which will promote research and education in the field of regenerative biology.


Upcoming special issue: call for papers

The Immune System in Development and Regeneration
Guest editors: Florent Ginhoux and Paul Martin
Submission deadline: 1 September 2021
Publication: Spring 2022

The special issue welcomes Review articles as well as Research articles, and will be widely promoted online and at key global conferences.


An interview with Cagney Coomer

Over a virtual chat, we spoke to Cagney Coomer about her experiences in the lab, the classroom and the community centre, and why she thinks outreach and role models are vital to science.


Development presents...

Our successful webinar series continues into 2021, with early-career researchers presenting their papers and a chance to virtually network with the developmental biology community afterwards. Here, Michèle Romanos talks about her new preprint, which mixes experimentation in quail embryos and computational modelling to understand how heterogeneity in a tissue influences cell rate.

Save your spot at our next session:

10 March
Time: 9:00 (GMT)
Chaired by: Thomas Lecuit

Join our mailing list to receive news and updates on the series.

Articles

  • Accepted manuscripts
  • Issue in progress
  • Latest complete issue
  • Issue archive
  • Archive by article type
  • Special issues
  • Subject collections
  • Sign up for alerts

About us

  • About Development
  • About the Node
  • Editors and board
  • Editor biographies
  • Travelling Fellowships
  • Grants and funding
  • Journal Meetings
  • Workshops
  • The Company of Biologists

For authors

  • Submit a manuscript
  • Aims and scope
  • Presubmission enquiries
  • Article types
  • Manuscript preparation
  • Cover suggestions
  • Editorial process
  • Promoting your paper
  • Open Access
  • Biology Open transfer

Journal info

  • Journal policies
  • Rights and permissions
  • Media policies
  • Reviewer guide
  • Sign up for alerts

Contact

  • Contact Development
  • Subscriptions
  • Advertising
  • Feedback
  • Institutional usage stats (logged-in users only)

 Twitter   YouTube   LinkedIn

© 2021   The Company of Biologists Ltd   Registered Charity 277992