Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Sign up for alerts
  • About us
    • About Development
    • About the Node
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contacts
    • Subscriptions
    • Advertising
    • Feedback
    • For library administrators
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

User menu

  • Log in
  • Log out

Search

  • Advanced search
Development
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

supporting biologistsinspiring biology

Development

  • Log in
Advanced search

RSS  Twitter  Facebook  YouTube 

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Sign up for alerts
  • About us
    • About Development
    • About the Node
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contacts
    • Subscriptions
    • Advertising
    • Feedback
    • For library administrators
JOURNAL ARTICLES
REF-1, a protein with two bHLH domains, alters the pattern of cell fusion in C. elegans by regulating Hox protein activity
S. Alper, C. Kenyon
Development 2001 128: 1793-1804;
S. Alper
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
C. Kenyon
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & metrics
  • PDF
Loading

Summary

Hox genes control the choice of cell fates along the anteroposterior (AP) body axis of many organisms. In C. elegans, two Hox genes, lin-39 and mab-5, control the cell fusion decision of the 12 ventrally located Pn.p cells. Specific Pn.p cells fuse with an epidermal syncytium, hyp7, in a sexually dimorphic pattern. In hermaphrodites, Pn.p cells in the mid-body region remain unfused whereas in males, Pn.p cells adopt an alternating pattern of syncytial and unfused fates. The complexity of these fusion patterns arises because the activities of these two Hox proteins are regulated in a sex-specific manner. MAB-5 activity is inhibited in hermaphrodite Pn.p cells and thus MAB-5 normally only affects the male Pn.p fusion pattern. Here we identify a gene, ref-1, that regulates the hermaphrodite Pn.p cell fusion pattern largely by regulating MAB-5 activity in these cells. Mutation of ref-1 also affects the fate of other epidermal cells in distinct AP body regions. ref-1 encodes a protein with two basic helix-loop-helix domains distantly related to those of the hairy/Enhancer of split family. ref-1, and another hairy homolog, lin-22, regulate similar cell fate decisions in different body regions along the C. elegans AP body axis.

Reference

    1. Altschul S. F.,
    2. Madden T. L.,
    3. Schaffer A. A.,
    4. Zhang J.,
    5. Zhang Z.,
    6. Miller W.,
    7. Lipman D. J.
    (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25, 3389–3402
    OpenUrlAbstract/FREE Full Text
    1. Ambros V.,
    2. Horvitz H. R.
    (1984) Heterochronic mutants of the nematode Caenorhabditis elegans. Science 226, 409–416
    OpenUrlAbstract/FREE Full Text
    1. Andrew D. J.,
    2. Horner M. A.,
    3. Petitt M. G.,
    4. Smolik S. M.,
    5. Scott M. P.
    (1994) Setting limits on homeotic gene function: restraint of Sex combs reduced activity by teashirt and other homeotic genes. EMBO J 13, 1132–1144
    OpenUrlPubMedWeb of Science
    1. Bettinger J. C.,
    2. Euling S.,
    3. Rougvie A. E.
    (1997) The terminal differentiation factor LIN-29 is required for proper vulval morphogenesis and egg laying in Caenorhabditis elegans. Development 124, 4333–42
    OpenUrlAbstract
    1. Brenner S.
    (1974) The genetics of Caenorhabditis elegans. Genetics 77, 71–94
    OpenUrlAbstract/FREE Full Text
    1. Brunschwig K.,
    2. Wittmann C.,
    3. Schnabel R.,
    4. Burglin T. R.,
    5. Tobler H.,
    6. Muller F.
    (1999) Anterior organization of the Caenorhabditiselegans embryo by the labial -like Hox gene ceh-13. Development 126, 1537–1546
    OpenUrlAbstract
    1. Ch'ng Q.,
    2. Kenyon C.
    (1999) egl-27 generates anteroposterior patterns of cell fusion in C. elegans by regulating Hox gene expression and Hox protein function. Development 126, 3303–3312
    OpenUrlAbstract
    1. Chan S.-K.,
    2. Jaffe L.,
    3. Capovilla M.,
    4. Botas J.,
    5. Mann R. S.
    (1994) The DNA binding specificity of Ultrabithorax is modulated by cooperative interactions with Extradenticle, another Homeoprotein. Cell 78, 603–615
    OpenUrlCrossRefPubMedWeb of Science
    1. Chisholm A.
    (1991) Control of cell fate in the tail region of C. elegans by the gene egl-5. Development 111, 921–32
    OpenUrlAbstract/FREE Full Text
    1. Clark S. G.,
    2. Chisholm A. D.,
    3. Horvitz H. R.
    (1993) Control of cell fates in the central body region of C. elegans by the homeobox gene lin-39. Cell 74, 43–55
    OpenUrlCrossRefPubMedWeb of Science
    1. Dawson S. R.,
    2. Turner D. L.,
    3. Weintraub H.,
    4. Parkhurst S. M.
    (1995) Specificity for the Hairy/Enhancer of split Basic Helix-Loop-Helix (bHLH) proteins maps outside othe bHLH domain and suggests two separable modes of transcriptional repression. Mol. Cell. Biol 15, 6923–6931
    OpenUrlAbstract/FREE Full Text
    1. de Zulueta P.,
    2. Alexandre E.,
    3. Jacq B.,
    4. Kerridge S.
    (1994) Homeotic complex and teashirt genes co-operate to establish trunk segmental identities in Drosophila. Development 120, 2278–2296
    OpenUrl
    1. Delidakis C.,
    2. Artavanis-Tsakonas S.
    (1992) The Enhancer of split [E(spl)] locus of Drosophila encodes seven independent helix-loop-helix proteins. Proc. Natl. Acad. Sci. USA 89, 8731–8735
    OpenUrlAbstract/FREE Full Text
    1. Duncan I.
    (1996) How do single homeotic genes control multiple segment identities?. BioEssays 18, 91–94
    OpenUrlCrossRefPubMed
    1. Ferreira H. B.,
    2. Zhang Y.,
    3. Zhao C.,
    4. Emmons S. W.
    (1999) Patterning of Caenorhabditis elegans posterior structures by the Abdominal-B homolog, egl-5. Dev. Biol 207, 215–228
    OpenUrlCrossRefPubMedWeb of Science
    1. Fire A.,
    2. Xu S.,
    3. Montgomery M. K.,
    4. Kostas S. A.,
    5. Driver S. E.,
    6. Mello C. C.
    (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806–811
    OpenUrlCrossRefPubMedWeb of Science
    1. Fisher A. L.,
    2. Ohsako S.,
    3. Caudy M.
    (1996) The WRPW motif of the hairy-related Basic Helix-Loop-Helix repressor proteins acts as a 4-amino-acid transcription repression and protein-protein interaction domain. Mol. Cell. Biol 16, 2670–2677
    OpenUrlAbstract/FREE Full Text
    1. Forrester W. C.,
    2. Dell M.,
    3. Perens E.,
    4. Garriga G.
    (1999) A C. elegans Ror receptor tyrosine kinase regulates cell motility and asymmetric cell division. Nature 400, 881–885
    OpenUrlCrossRefPubMed
    1. Francis R.,
    2. Waterston R. H.
    (1991) Muscle cell attachment in Caenhorabditis elegans. J. Cell Biol 114, 465–479
    OpenUrlAbstract/FREE Full Text
    1. Frohman M. A.
    (1993) Rapid amplification of complementary DNA ends for generation of full-length complementary DNAs: thermal RACE. Methods Enzymol 218, 340–356
    OpenUrlCrossRefPubMedWeb of Science
    1. Greenwald I. S.,
    2. Sternberg P. W.,
    3. Horvitz H. R.
    (1983) The lin-12 locus specifies cell fates in Caenorhabditis elegans. Cell 34, 435–444
    OpenUrlCrossRefPubMedWeb of Science
    1. Hedgecock E. M.,
    2. Culottie J. G.,
    3. Hall D. H.,
    4. Stern B. D.
    (1987) Genetics of cell and axon migrations in Caenhorabditis elegans. Development 100, 365–382
    OpenUrlAbstract
    1. Herman M. A.,
    2. Ch'ng Q.,
    3. Hettenbach S. M.,
    4. Ratliff T. M.,
    5. Kenyon C.,
    6. Herman R. K.
    (1998) EGL-27 is similar to a metastasis-associated factor and controls cell polarity and cell migration in C. elegans. Development 126, 1055–1064
    OpenUrl
    1. Herman M. A.,
    2. Horvitz H. R.
    (1994) The Caenorhabditis elegans gene lin-44 controls the polarity of asymmetric cell divisions. Development 120, 1035–1047
    OpenUrlAbstract
    1. Hodgkin J. A.,
    2. Horvitz H. R.,
    3. Brenner S.
    (1979) Nondisjunction mutants of the nematode Caenorhabditis elegans. Genetics 91, 67–94
    OpenUrlAbstract/FREE Full Text
    1. Hunter C. P.,
    2. Wood W. B.
    (1990) The tra-1 gene determines sexual phenotype cell-autonomously in C. elegans. Cell 63, 1193–1204
    OpenUrlCrossRefPubMedWeb of Science
    1. Ingham P. W.,
    2. Pinchin S. M.,
    3. Howard K. R.,
    4. Ish-Horowicz D.
    (1985) Genetic analysis of the hairy locus in Drosophila melanogaster. Genetics 111, 463–486
    OpenUrlAbstract/FREE Full Text
    1. Jen W. C.,
    2. Gawantka V.,
    3. Pollet N.,
    4. Niehrs C.,
    5. Kintner C.
    (1999) Periodic repression of Notch pathway genes governs the segmentation of Xenopus embryos. Genes Dev 13, 1486–99
    OpenUrlAbstract/FREE Full Text
    1. Kenyon C.
    (1986) A gene involved in the development of the posterior body region of C. elegans. Cell 46, 477–487
    OpenUrlCrossRefPubMedWeb of Science
    1. Knust E.,
    2. Schrons H.,
    3. Grawe F.,
    4. Campos-Ortega J. A.
    (1992) Sevengenes of the Enhancer of split Complex of Drosophila melanogaster encode helix-loop-helix proteins. Genetics 132, 505–518
    OpenUrlAbstract/FREE Full Text
    1. Krumlauf R.
    (1994) Hox genes in vertebrate development. Cell 78, 191–201
    OpenUrlCrossRefPubMedWeb of Science
    1. Lawrence P. A.,
    2. Morata G.
    (1994) Homeobox genes: their function in Drosophila segmentation and pattern formation. Cell 78, 181–189
    OpenUrlCrossRefPubMedWeb of Science
    1. Maloof J. N.,
    2. Kenyon C.
    (1998) The Hox gene lin-39 is required during C. elegans vulval induction to select the outcome of Ras signaling. Development 125, 181–190
    OpenUrlAbstract
    1. McGinnis N.,
    2. Ragnhildstveit E.,
    3. Veraksa A.,
    4. McGinnis W.
    (1998) A cap ‘n’ collar protein isoform contains a selective Hox repressor function. Development 125, 4553–4564
    OpenUrlAbstract
    1. McGinnis W.,
    2. Krumlauf R.
    (1992) Homeobox genes and axial patterning. Cell 68, 283–302
    OpenUrlCrossRefPubMedWeb of Science
    1. Nusslein-Volhard C.,
    2. Wieschaus E.
    (1980) Mutations affecting segment number and polarity in Drosophila. Nature 287, 795–801
    OpenUrlCrossRefPubMedWeb of Science
    1. Pai C.-Y.,
    2. Kuo T.-S.,
    3. Jaw T. J.,
    4. Kurant E.,
    5. Chen C.-T.,
    6. Bessarab D. A.,
    7. Salzberg A.,
    8. Sun Y. H.
    (1998) The Homothorax homeoprotein activates the nuclear localization of another homeoprotein, Extradenticle, and suppresses eye development in Drosophila. Genes Dev 12, 435–446
    OpenUrlAbstract/FREE Full Text
    1. Paroush Z.,
    2. Finley R. L., Jr.,
    3. Kidd T.,
    4. Wainright S. M.,
    5. Ingham P. W.,
    6. Brent R.,
    7. Ish-Horowicz D.
    (1994) Groucho is required for Drosophila neurogenesis, segmentation, and sex determination and interacts directly with Hairy-related bHLH proteins. Cell 79, 808–815
    OpenUrl
    1. Peifer M.,
    2. Wieschaus E.
    (1990) Mutations in the Drosophila gene extradenticle affect the way specific homeo domain proteins regulate segmental identity. Genes Dev 4, 1209–1223
    OpenUrlAbstract/FREE Full Text
    1. Pflugrad A.,
    2. Meir J. Y.,
    3. Barnes T. M.,
    4. Miller D. M., III
    (1997) The groucho-like transcription factor UNC-37 functions with the neural specificity gene unc-4 to govern motor neuron identity in C. elegans. Development 124, 1699–1709
    OpenUrlAbstract
    1. Pinsonneault J.,
    2. Florence B.,
    3. Vaessin H.,
    4. McGinnis W.
    (1997) A model for extradenticle function as a switch that changes HOX proteins from repressors to activators. EMBO J 16, 2032–2042
    OpenUrlAbstract
    1. Podbilewicz B.,
    2. White J. G.
    (1994) Cell fusions in the developing epithelia of C. elegans. Dev. Biol 161, 408–424
    OpenUrlCrossRefPubMedWeb of Science
    1. Rauskolb C.,
    2. Peifer M.,
    3. Wieschaus E.
    (1993) extradenticle, a regulator of homeotic gene activity, is a homolog of the homeobox-containing human proto-oncogene pbx1. Cell 74, 1101–1112
    OpenUrlCrossRefPubMedWeb of Science
    1. Rauskolb C.,
    2. Wieschaus E.
    (1994) Coordinate regulation of downstream genes by extradenticle and the homeotic selector proteins. EMBO J 13, 3561–3569
    OpenUrlPubMedWeb of Science
    1. Rieckhof G. E.,
    2. Casares F.,
    3. Don Ryoo H.,
    4. Abu-Shaar M.,
    5. Mann R. S.
    (1997) Nuclear translocation of Extradenticle requires homothorax, which encodes an Extradenticle-related Homeodomain protein. Cell 91, 171–183
    OpenUrlCrossRefPubMedWeb of Science
    1. Rushlow C. A.,
    2. Hogan A.,
    3. Pinchin S. M.,
    4. Howe K. M.,
    5. Lardelli M.,
    6. Ish-Horowicz D.
    (1989) The Drosophila hairy protein acts in both segmentation and bristle patterning and shows homology to N- myc. EMBO J 8, 3095–3103
    OpenUrlPubMedWeb of Science
    1. Ruvkun G.,
    2. Hobert O.
    (1998) The taxonomy of developmental control in Caenorhabditis elegans. Science 282, 2033–41
    OpenUrlAbstract/FREE Full Text
    1. Salser S. J.,
    2. Loer C. M.,
    3. Kenyon C.
    (1993) Multiple HOM-C gene interactions specify cell fates in the nematode central nervous system. Genes Dev 7, 1714–1724
    OpenUrlAbstract/FREE Full Text
    1. Salser S. J.,
    2. Kenyon C.
    (1996) A C. elegans Hox gene switches on, off, on, and off again to regulate proliferation, differentiation, and morphogenesis. Development 122, 1651–1661
    OpenUrlAbstract
    1. Sasai Y.,
    2. Kageyama R.,
    3. Tagawa Y.,
    4. Shigemoto R.,
    5. Nakanishi S.
    (1992) Two mammalian helix-loop-helix factors structurally related to Drosophila hairy and Enhancer of split. Genes Dev 6, 2620–2634
    OpenUrlAbstract/FREE Full Text
    1. Shemer G.,
    2. Podbilewicz B.
    (2000) Fusomorphogenesis: cell fusion in organ formation. Dev. Dynam 218, 30–51
    OpenUrlCrossRefPubMedWeb of Science
    1. Sigurdson D. C.,
    2. Spanier G. J.,
    3. Herman R. K.
    (1984) Caenorhabditis elegans deficiency mapping. Genetics 108, 331–345
    OpenUrlAbstract/FREE Full Text
    1. Solari F.,
    2. Bateman A.,
    3. Ahringer J.
    (1999) The Caenorhabditis elegans genes egl-27 and egr-1 are similar to MTA1, a member of a chromatin regulatory complex, and are redundantly required for embryonic patterning. Development 126, 2483–2494
    OpenUrlAbstract
    1. Sulston J. E.,
    2. Horvitz H. R.
    (1977) Post-embryonic cell lineages of the nematode, Caenorhabditis elegans. Dev. Biol 56, 110–156
    OpenUrlCrossRefPubMedWeb of Science
    1. Sulston J. E.,
    2. White J. G.
    (1980) Regulation and cell autonomy during postembryonic development of Caenorhabditis elegans. Dev. Biol 78, 577–597
    OpenUrlCrossRefPubMedWeb of Science
    1. Sulston J. E.,
    2. Albertson D. G.,
    3. Thomson J. N.
    (1980) The Caenorhabditis elegans male: postembryonic development of nongonadal structures. Dev. Biol 78, 542–576
    OpenUrlCrossRefPubMedWeb of Science
    1. Takebayashi K.,
    2. Akazawa C.,
    3. Nakanishi S.,
    4. Kageyama R.
    (1995) Structure and promoter analysis of the gene encoding the mouse Helix-Loop-Helix factor HES-5. J. Biol. Chem 270, 1342–1349
    OpenUrlAbstract/FREE Full Text
    1. van Auken K.,
    2. Weaver D. C.,
    3. Edgar L. G.,
    4. Wood W. B.
    (2000) Caenorhabditis elegans embryonic axial patterning requires two recently discovered posterior-group Hox genes. Proc. Natl. Acad. Sci. USA 97, 4499–4503
    OpenUrlAbstract/FREE Full Text
    1. Van Doren M.,
    2. Bailey A. M.,
    3. Esnayra J.,
    4. Ede K.,
    5. Posakony J. W.
    (1994) Negative regulation of proneural gene activity: hairy is a direct transcriptional repressor of achaete. Genes Dev 8, 2729–2742
    OpenUrlAbstract/FREE Full Text
    1. Veraksa A.,
    2. McGinnis N.,
    3. Li X.,
    4. Mohler J.,
    5. McGinnis W.
    (2000) Can ‘n’ collar B cooperates with a small Maf subunit to specify pharyngeal development and suppress Deformed homeotic function in the Drosophila head. Development 127, 4023–4037
    OpenUrlAbstract
    1. Wainwright S. M.,
    2. Ish-Horowicz D.
    (1992) Point mutations in the Drosophila hairy gene demonstrate in vivo requirements for basic, helix-loop-helix, and WRPW domains. Mol. Cell. Biol 12, 2475–2483
    OpenUrlAbstract/FREE Full Text
    1. Wang B. B.,
    2. Muller-Immergluck M. M.,
    3. Austin J.,
    4. Robinson N. T.,
    5. Chisholm A.,
    6. Kenyon C.
    (1993) A homeotic gene cluster patterns the anteroposterior body axis of C. elegans. Cell 74, 29–42
    OpenUrlCrossRefPubMedWeb of Science
    1. Waring D. A.,
    2. Kenyon C.
    (1991) Regulation of cellular responsiveness to inductive signals in the developing C. elegans nervous system. Nature 350, 712–715
    OpenUrlCrossRefPubMed
    1. Waring D. A.,
    2. Wrischnik L.,
    3. Kenyon C.
    (1992) Cell signals allow the expression of a pre-existent neural pattern pattern in C. elegans. Development 116, 457–466
    OpenUrlAbstract/FREE Full Text
    1. Whangbo J.,
    2. Harris J.,
    3. Kenyon C.
    (2000) Multiple levels of regulation specify the polarity of an asymmetric cell division in C. elegans. Development 127, 4587–4598
    OpenUrlAbstract
    1. Williams B. D.,
    2. Schrank B.,
    3. Huynh C.,
    4. Shownkeen R.,
    5. Waterston R. H.
    (1992) A genetic mapping system in Caenorhabditis elegans based on polymorphic sequence-tagged sites. Genetics 131, 609–624
    OpenUrlAbstract/FREE Full Text
    1. Wrischnik L. A.,
    2. Kenyon C. J.
    (1997) The role of lin-22, a hairy/Enhancer of split homolog, in patterning the peripheral nervous system of C. elegans. Development 124, 2875–2888
    OpenUrlAbstract
    1. Yochem J.,
    2. Weston K.,
    3. Greenwald I.
    (1988) The Caenorhabditis elegans lin-12 gene encodes a transmembrane protein with overall similarity to Drosophila Notch. Nature 335, 547–550
    OpenUrlCrossRefPubMed
    1. Zarkower D.,
    2. Hodgkin J.
    (1992) Molecular analysis of the C. elegans sex-determining gene tra-1: a gene encoding two zinc finger proteins. Cell 70, 237–249
    OpenUrlCrossRefPubMedWeb of Science
Previous ArticleNext Article
Back to top
Previous ArticleNext Article

This Issue

 Download PDF

Email

Thank you for your interest in spreading the word on Development.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
REF-1, a protein with two bHLH domains, alters the pattern of cell fusion in C. elegans by regulating Hox protein activity
(Your Name) has sent you a message from Development
(Your Name) thought you would like to see the Development web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
JOURNAL ARTICLES
REF-1, a protein with two bHLH domains, alters the pattern of cell fusion in C. elegans by regulating Hox protein activity
S. Alper, C. Kenyon
Development 2001 128: 1793-1804;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Citation Tools
JOURNAL ARTICLES
REF-1, a protein with two bHLH domains, alters the pattern of cell fusion in C. elegans by regulating Hox protein activity
S. Alper, C. Kenyon
Development 2001 128: 1793-1804;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Alerts

Please log in to add an alert for this article.

Sign in to email alerts with your email address

Article navigation

  • Top
  • Article
  • Info & metrics
  • PDF

Related articles

Cited by...

More in this TOC section

  • Groucho augments the repression of multiple Even skipped target genes in establishing parasegment boundaries
  • Axial skeletal patterning in mice lacking all paralogous group 8 Hox genes
  • Morphogenetic cell movements in the middle region of the dermomyotome dorsomedial lip associated with patterning and growth of the primary epaxial myotome
Show more JOURNAL ARTICLES

Similar articles

Other journals from The Company of Biologists

Journal of Cell Science

Journal of Experimental Biology

Disease Models & Mechanisms

Biology Open

Advertisement

A new society for regenerative biologists

Kenneth Poss and Elly Tanaka announce the launch of the International Society for Regenerative Biology (ISRB), which will promote research and education in the field of regenerative biology.


Upcoming special issue: call for papers

The Immune System in Development and Regeneration
Guest editors: Florent Ginhoux and Paul Martin
Submission deadline: 1 September 2021
Publication: Spring 2022

The special issue welcomes Review articles as well as Research articles, and will be widely promoted online and at key global conferences.


An interview with Cagney Coomer

Over a virtual chat, we spoke to Cagney Coomer about her experiences in the lab, the classroom and the community centre, and why she thinks outreach and role models are vital to science.


Development presents...

Our successful webinar series continues into 2021, with early-career researchers presenting their papers and a chance to virtually network with the developmental biology community afterwards. Here, Michèle Romanos talks about her new preprint, which mixes experimentation in quail embryos and computational modelling to understand how heterogeneity in a tissue influences cell rate.

Save your spot at our next session:

10 March
Time: 9:00 (GMT)
Chaired by: Thomas Lecuit

Join our mailing list to receive news and updates on the series.

Articles

  • Accepted manuscripts
  • Issue in progress
  • Latest complete issue
  • Issue archive
  • Archive by article type
  • Special issues
  • Subject collections
  • Sign up for alerts

About us

  • About Development
  • About the Node
  • Editors and board
  • Editor biographies
  • Travelling Fellowships
  • Grants and funding
  • Journal Meetings
  • Workshops
  • The Company of Biologists

For authors

  • Submit a manuscript
  • Aims and scope
  • Presubmission enquiries
  • Article types
  • Manuscript preparation
  • Cover suggestions
  • Editorial process
  • Promoting your paper
  • Open Access
  • Biology Open transfer

Journal info

  • Journal policies
  • Rights and permissions
  • Media policies
  • Reviewer guide
  • Sign up for alerts

Contact

  • Contact Development
  • Subscriptions
  • Advertising
  • Feedback
  • Institutional usage stats (logged-in users only)

 Twitter   YouTube   LinkedIn

© 2021   The Company of Biologists Ltd   Registered Charity 277992