Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Sign up for alerts
  • About us
    • About Development
    • About the Node
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contacts
    • Subscriptions
    • Advertising
    • Feedback
    • For library administrators
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

User menu

  • Log in
  • Log out

Search

  • Advanced search
Development
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

supporting biologistsinspiring biology

Development

  • Log in
Advanced search

RSS  Twitter  Facebook  YouTube 

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Sign up for alerts
  • About us
    • About Development
    • About the Node
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contacts
    • Subscriptions
    • Advertising
    • Feedback
    • For library administrators
JOURNAL ARTICLES
Sonic hedgehog contributes to oligodendrocyte specification in the mammalian forebrain
S. Nery, H. Wichterle, G. Fishell
Development 2001 128: 527-540;
S. Nery
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
H. Wichterle
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
G. Fishell
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & metrics
  • PDF
Loading

Summary

This study addresses the role of Sonic hedgehog (Shh) in promoting the generation of oligodendrocytes in the mouse telencephalon. We show that in the forebrain, expression of the early oligodendrocyte markers Olig2, plp/dm20 and PDGFR(alpha) corresponds to regions of Shh expression. To directly test if Shh can induce the development of oligodendrocytes within the telencephalon, we use retroviral vectors to ectopically express Shh within the mouse embryonic telencephalon. We find that infections with Shh-expressing retrovirus at embryonic day 9.5, result in ectopic Olig2 and PDGFR(alpha) expression by mid-embryogenesis. By postnatal day 21, cells expressing ectopic Shh overwhelmingly adopt an oligodendrocyte identity. To determine if the loss of telencephalic Shh correspondingly results in the loss of oligodendrocyte production, we studied Nkx2.1 mutant mice in which telencephalic expression of Shh is selectively lost. In accordance with Shh playing a role in oligodendrogenesis, within the medial ganglionic eminence of Nkx2.1 mutants, the early expression of PDGFR(alpha) is absent and the level of Olig2 expression is diminished in this region. In addition, in these same mutants, expression of both Shh and plp/dm20 is lost in the hypothalamus. Notably, in the prospective amygdala region where Shh expression persists in the Nkx2.1 mutant, the presence of plp/dm20 is unperturbed. Further supporting the idea that Shh is required for the in vivo establishment of early oligodendrocyte populations, expression of PDGFR(alpha) can be partially rescued by virally mediated expression of Shh in the Nkx2.1 mutant telencephalon. Interestingly, despite the apparent requirement for Shh for oligodendrocyte specification in vivo, all regions of either wild-type or Nkx2.1 mutant telencephalon are competent to produce oligodendrocytes in vitro. Furthermore, analysis of CNS tissue from Shh null animals definitively shows that, in vitro, Shh is not required for the generation of oligodendrocytes. We propose that oligodendrocyte specification is negatively regulated in vivo and that Shh generates oligodendrocytes by overcoming this inhibition. Furthermore, it appears that a Shh-independent pathway for generating oligodendrocytes exists.

Reference

    1. Anderson S. A.,
    2. Eisenstat D. D.,
    3. Shi L.,
    4. Rubenstein J. L.
    (1997) Interneuron migration from basal forebrain to neocortex: dependence on Dlx genes. Science 278, 474–476
    OpenUrlAbstract/FREE Full Text
    1. Anderson E. S.,
    2. Bjartmar C.,
    3. Westermark G.,
    4. Hildebrand C.
    (1999) Molecular heterogeneity of oligodendrocytes in chicken white matter. Glia 27, 15–21
    OpenUrlPubMed
    1. Anderson S.,
    2. Mione M.,
    3. Yun K.,
    4. Rubenstein J. L.
    (1999) Differential origins of neocortical projection and local circuit neurons: role of Dlx genes in neocortical interneuronogenesis. Cereb. Cortex 9, 646–654
    OpenUrlAbstract/FREE Full Text
    1. Bang A. G.,
    2. Goulding M. D.
    (1996) Regulation of vertebrate neural cell fate by transcription factors. Curr. Opin. Neurobiol 6, 25–32
    OpenUrlCrossRefPubMedWeb of Science
    1. Bansal R.,
    2. Warrington A. E.,
    3. Gard A. L.,
    4. Ranscht B.,
    5. Pfeiffer S. E.
    (1989) Multiple and novel specificities of monoclonal antibodies O1, O4, and R-mAb used in the analysis of oligodendrocyte development. J. Neurosci. Res 24, 548–557
    OpenUrlCrossRefPubMedWeb of Science
    1. Bansal R.,
    2. Pfeiffer S. E.
    (1992) Novel stage in the oligodendrocyte lineage defined by reactivity of progenitors with R-mAb prior to O1 anti-galactocerebroside. J. Neurosci. Res 32, 309–316
    OpenUrlCrossRefPubMedWeb of Science
    1. Bansal R.,
    2. Stefansson K.,
    3. Pfeiffer S. E.
    (1992) Proligodendroblast antigen (POA), a developmental antigen expressed by A007/O4-positive oligodendrocyte progenitors prior to the appearance of sulfatide and galactocerebroside. J. Neurochem 58, 2221–2229
    OpenUrlCrossRefPubMedWeb of Science
    1. Barres B. A.,
    2. Raff M. C.
    (1994) Control of oligodendrocyte number in the developing rat optic nerve. Neuron 12, 935–942
    OpenUrlCrossRefPubMedWeb of Science
    1. Birling M. C.,
    2. Price J.
    (1998) A study of the potential of the embryonic rat telencephalon to generate oligodendrocytes. Dev. Biol 193, 100–113
    OpenUrlCrossRefPubMedWeb of Science
    1. Bjartmar C.,
    2. Hildebrand C.,
    3. Loinder K.
    (1994) Morphological heterogeneity of rat oligodendrocytes: electron microscopic studies on serial sections. Glia 11, 235–244
    OpenUrlCrossRefPubMed
    1. Braun P. E.,
    2. Sandillon F.,
    3. Edwards A.,
    4. Matthieu J. M.,
    5. Privat A.
    (1988) Immunocytochemical localization by electron microscopy of 2′3-cyclic nucleotide 3 -phosphodiesterase in developing oligodendrocytes of normal and mutant brain. J. Neurosci 8, 3057–3066
    OpenUrlAbstract
    1. Briscoe J.,
    2. Sussel L.,
    3. Serup P.,
    4. Hartigan-O'Connor D.,
    5. Jessell T. M.,
    6. Rubenstein J. L.,
    7. Ericson J.
    (1999). Homeobox gene Nkx2.2 andspecification of neuronal identity by graded Sonic hedgehog signalling. Nature 398, 622–627
    OpenUrlCrossRefPubMed
    1. Briscoe J.,
    2. Pierani A. D.,
    3. Jessell T. M.,
    4. Ericson J.
    (2000) A homeodomain protein code specifies progenitor cell identity and neuronal fate in the ventral neural tube. Cell 101, 435–445
    OpenUrlCrossRefPubMedWeb of Science
    1. Butt A. M.,
    2. Colquhoun K.,
    3. Tutton M.,
    4. Berry M.
    (1994) Three-dimensional morphology of astrocytes and oligodendrocytes in the intact mouse optic nerve. J. Neurocytol 23, 469–485
    OpenUrlCrossRefPubMedWeb of Science
    1. Chiang C.,
    2. Litingtung Y.,
    3. Lee E.,
    4. Young K. E.,
    5. Corden J. L.,
    6. Westphal H.,
    7. Beachy P. A.
    (1996) Cyclopia and defective axial patterning in mice lacking Sonic Hedgehog gene function. Nature 383, 407–413
    OpenUrlCrossRefPubMed
    1. Dong Z.,
    2. Sinanan A.,
    3. Parkinson D.,
    4. Parmantier E.,
    5. Mirsky R.,
    6. Jessen K. R.
    (1999) Schwann cell development in embryonic mouse nerves. J. Neurosci. Res 56, 334–348
    OpenUrlCrossRefPubMedWeb of Science
    1. Echelard Y.,
    2. Epstein D. J.,
    3. St-Jacques B.,
    4. Shen L.,
    5. Mohler J.,
    6. McMahon J. A.,
    7. McMahon A. P.
    (1993) Sonic hedgehog, a member of a family of putative signaling molecules, is implicated in the regulation of CNS polarity. Cell 75, 1417–1430
    OpenUrlCrossRefPubMedWeb of Science
    1. Ericson J.,
    2. Muhr J.,
    3. Jessell T. M.,
    4. Edlund T.
    (1995) Sonic hedgehog: a common signal for ventral patterning along the rostrocaudal axis of the neural tube. Int. J. Dev. Biol 39, 809–816
    OpenUrlPubMedWeb of Science
    1. Ericson J.,
    2. Briscoe J.,
    3. Rashbass P.,
    4. van Heyningen V.,
    5. Jessell T. M.
    (1997) Graded sonic hedgehog signaling and the specification of cell fate in the ventral neural tube. Cold Spring Harb. Symp. Quant. Biol 62, 451–466
    OpenUrlAbstract/FREE Full Text
    1. Fruttiger M.,
    2. Karlsson L.,
    3. Hall A. C.,
    4. Abramsson A.,
    5. Calver A. R.,
    6. Bostrom H.,
    7. Willetts K.,
    8. Bertold C. H.,
    9. Heath J. K.,
    10. Betsholtz C.,
    11. et al
    . (1999) Defective oligodendrocyte development and severe hypomyelination in PDGF-A knockout mice. Development 126, 457–467
    OpenUrlAbstract
    1. Gaiano N.,
    2. Nye J. S.,
    3. Fishell G.
    (2000) Radial glial identity is promoted by Notch1 signaling in the murine forebrain. Neuron 26, 395–404
    OpenUrlCrossRefPubMedWeb of Science
    1. Hall A.,
    2. Giese N. A.,
    3. Richardson W. D.
    (1996) Spinal cord oligodendrocytes develop from ventrally derived progenitor cells that express PDGF alpha-receptors. Development 122, 4085–4094
    OpenUrlAbstract
    1. Jessen K. R.,
    2. Mirsky R.
    (1997) Embryonic Schwann cell development: the biology of Schwann cell precursors and early Schwann cells. J. Anat 191, 501–505
    1. Kimura S.,
    2. Hara Y.,
    3. Pineau T.,
    4. Fernandez-Salguero P.,
    5. Fox C. H.,
    6. Ward J. M.,
    7. Gonzalez F. J.
    (1996) The T/ebp null mouse: thyroid-specific enhancer-binding protein is essential for the organogenesis of the thyroid, lung, ventral forebrain, and pituitary. Genes Dev 10, 60–69
    OpenUrlAbstract/FREE Full Text
    1. Kohtz J. D.,
    2. Baker D. P.,
    3. Corte G.,
    4. Fishell G.
    (1998) Regionalization within the mammalian telencephalon is mediated by changes in responsiveness to Sonic Hedgehog. Development 125, 5079–5089
    OpenUrlAbstract
    1. Leber S. M.,
    2. Sanes J. R.
    (1995) Migratory paths of neurons and glia in the embryonic chick spinal cord. J. Neurosci 15, 1236–1248
    OpenUrlAbstract
    1. Liu A.,
    2. Joyner A. L.,
    3. Turnbull D. H.
    (1998) Alteration of limb and brain patterning in early mouse embryos by ultrasound-guided injection of Shh-expressing cells. Mech. Dev 75, 107–115
    OpenUrlCrossRefPubMedWeb of Science
    1. Lu Q. R.,
    2. Yuk D.,
    3. Alberta J. A.,
    4. Zhu Z.,
    5. Pawlitzky I.,
    6. Chan J.,
    7. McMahon A. P.,
    8. Stiles C. D.,
    9. Rowitch D. H.
    (2000) Sonic hedgehog-regulated oligodendrocyte lineage genes encoding bHLH proteins in the mammalian central nervous system. Neuron 25, 317–329
    OpenUrlCrossRefPubMedWeb of Science
    1. Mercola M.,
    2. Wang C. Y.,
    3. Kelly J.,
    4. Brownlee C.,
    5. Jackson-Grusby L.,
    6. Stiles C.,
    7. Bowen-Pope D.
    (1990) Selective expression of PDGF A and its receptor during early mouse embryogenesis. Dev. Biol 138, 114–122
    OpenUrlCrossRefPubMedWeb of Science
    1. Miller R. H.
    (1996) Oligodendrocyte origins. Trends Neurosci 19, 92–96
    OpenUrlCrossRefPubMedWeb of Science
    1. Miller R. H.,
    2. Payne J.,
    3. Milner L.,
    4. Zhang H.,
    5. Orentas D. M.
    (1997) Spinal cord oligodendrocytes develop from a limited number of migratory highly proliferative precursors. J. Neurosci. Res 50, 157–168
    OpenUrlCrossRefPubMedWeb of Science
    1. Miller R. H.,
    2. Hayes J. E.,
    3. Dyer K. L.,
    4. Sussman C. R.
    (1999) Mechanisms of oligodendrocyte commitment in the vertebrate CNS. Int. J. Dev. Neurosci 17, 753–763
    OpenUrlCrossRefPubMedWeb of Science
    1. Noll E.,
    2. Miller R. H.
    (1993) Oligodendrocyte precursors originate at the ventral ventricular zone dorsal to the ventral midline region in the embryonic rat spinal cord. Development 118, 563–573
    OpenUrlAbstract
    1. Olsson M.,
    2. Campbell K.,
    3. Turnbull D. H.
    (1997) Specification of mouse telencephalic and mid-hindbrain progenitors following heterotopic ultrasound-guided embryonic transplantation. Neuron 19, 761–772
    OpenUrlCrossRefPubMedWeb of Science
    1. Orentas D. M.,
    2. Hayes J. E.,
    3. Dyer K. L.,
    4. Miller R. H.
    (1999) Sonic hedgehog signaling is required during the appearance of spinal cord oligodendrocyte precursors. Development 126, 2419–2429
    OpenUrlAbstract
    1. Oumesmar B. N.,
    2. Vignais L.,
    3. Baron-Van Evercooren A.
    (1997) Developmental expression of platelet-derived growth factor alpha-receptor in neurons and glial cells of the mouse CNS. J. Neurosci 17, 125–139
    OpenUrlAbstract/FREE Full Text
    1. Perez Villegas E. M.,
    2. Olivier C.,
    3. Spassky N.,
    4. Poncet C.,
    5. Cochard P.,
    6. Zalc B.,
    7. Thomas J. L.,
    8. Martinez S.
    (1999) Early specification of oligodendrocytes in the chick embryonic brain. Dev. Biol 216, 98–113
    OpenUrlCrossRefPubMedWeb of Science
    1. Poncet C.,
    2. Soula C.,
    3. Trousse F.,
    4. Kan P.,
    5. Hirsinger E.,
    6. Pourquie O.,
    7. Duprat A. M.,
    8. Cochard P.
    (1996) Induction of oligodendrocyte progenitors in the trunk neural tube by ventralizing signals: effects of notochord and floor plate grafts, and of sonic hedgehog. Mech. Dev 60, 13–32
    OpenUrlCrossRefPubMedWeb of Science
    1. Pringle N. P.,
    2. Richardson W. D.
    (1993) A singularity of PDGF alpha-receptor expression in the dorsoventral axis of the neural tube may define the origin of the oligodendrocyte lineage. Development 117, 525–533
    OpenUrlAbstract
    1. Pringle N. P.,
    2. Yu W. P.,
    3. Guthrie S.,
    4. Roelink H.,
    5. Lumsden A.,
    6. Peterson A. C.,
    7. Richardson W. D.
    (1996) Determination of neuroepithelial cell fate: induction of the oligodendrocyte lineage by ventral midline cells and sonic hedgehog. Dev. Biol 177, 30–42
    OpenUrlCrossRefPubMedWeb of Science
    1. Puelles L.,
    2. Kuwana E.,
    3. Puelles E.,
    4. Bulfone A.,
    5. Shimamura K.,
    6. Keleher J.,
    7. Smiga S.,
    8. Rubenstein J.L.R.
    (2000). Pallial and subpallial derivatives in the embryonic chick and mouse telencephalon traced by the expression of the genes, Dlx-2, Emx-1, Nkx2.1, Pax6, and Tbr-1. J. Comp. Neurol 424, 409–.
    OpenUrlCrossRefPubMedWeb of Science
    1. Richardson W. D.,
    2. Pringle N. P.,
    3. Yu W. P.,
    4. Hall A. C.
    (1997) Origins of spinal cord oligodendrocytes: possible developmental and evolutionary relationships with motor neurons. Dev. Neurosci 19, 58–68
    OpenUrlPubMedWeb of Science
    1. Richardson W. D.,
    2. Smith H. K.,
    3. Sun T.,
    4. Pringle N. P.,
    5. Hall A.,
    6. Woodruff R.
    (2000) Oligodendrocyte lineage and the motor neuron connection. Glia 29, 136–142
    OpenUrlCrossRefPubMedWeb of Science
    1. Roelink H.,
    2. Porter J. A.,
    3. Chiang C.,
    4. Tanabe Y.,
    5. Chang D. T.,
    6. Beachy P. A.,
    7. Jessell T. M.
    (1995) Floor plate and motor neuron induction by different concentrations of the amino-terminal cleavage product of sonic hedgehog autoproteolysis. Cell 81, 445–455
    OpenUrlCrossRefPubMedWeb of Science
    1. Rowitch D. H.,
    2. S-Jaques B.,
    3. Lee S. M.,
    4. Flax J. D.,
    5. Snyder E. Y.,
    6. McMahon A. P.
    (1999) Sonic hedgehog regulates proliferation and inhibits differentiation of CNS precursor cells. J. Neurosci 19, 8954–8965
    OpenUrlAbstract/FREE Full Text
    1. Schaeren-Wiemers N.,
    2. Gerfin-Moser A.
    (1993) A single protocol to detect transcripts of various types and expression levels in neural tissue and cultured cells: in situ hybridization using digoxigenin-labelled cRNA probes. Histochemistry 100, 431–440
    OpenUrlCrossRefPubMedWeb of Science
    1. Shi J.,
    2. Marinovich A.,
    3. Barres B. A.
    (1998) Purification and characterization of adult oligodendrocyte precursor cells from the rat optic nerve. J. Neurosci 18, 4627–4636
    OpenUrlAbstract/FREE Full Text
    1. Shimamura K.,
    2. Hartigan D. J.,
    3. Martinez S.,
    4. Puelles L.,
    5. Rubenstein J. L.
    (1995) Longitudinal organization of the anterior neural plate and neural tube. Development 121, 3923–3933
    OpenUrlAbstract
    1. Shimamura K.,
    2. Rubenstein J. L.
    (1997) Inductive interactions direct early regionalization of the mouse forebrain. Development 124, 2709–2718
    OpenUrlAbstract
    1. Sommer I.,
    2. Schachner M.
    (1981) Monoclonal antibodies (O1 to O4) to oligodendrocyte cell surfaces: an immunocytological study in the central nervous system. Dev. Biol 83, 311–327
    OpenUrlCrossRefPubMedWeb of Science
    1. Spassky N.,
    2. Goujet-Zalc C.,
    3. Parmantier E.,
    4. Olivier C.,
    5. Martinez S.,
    6. Ivanova A.,
    7. Ikenaka K.,
    8. Macklin W.,
    9. Cerruti I.,
    10. Zalc B.,
    11. et al
    . (1998) Multiple restricted origin of oligodendrocytes. J. Neurosci 18, 8331–8343
    OpenUrlAbstract/FREE Full Text
    1. Spassky N.,
    2. Olivier C.,
    3. Perez-Villegas E.,
    4. Goujet-Zalc C.,
    5. Martinez S.,
    6. Thomas J.,
    7. Zalc B.
    (2000) Single or multiple oligodendroglial lineages: a controversy. Glia 29, 143–148
    OpenUrlCrossRefPubMedWeb of Science
    1. Sussel L.,
    2. Marin O.,
    3. Kimura S.,
    4. Rubenstein J. L.
    (1999). Loss of Nkx2.1 homeobox gene function results in a ventral to dorsal molecular respecification within the basal telencephalon: evidence for a transformation of the pallidum into the striatum. Development 126, 3359–3370
    OpenUrlAbstract
    1. Sussman C. R.,
    2. Dyer K. L.,
    3. Marchionni M.,
    4. Miller R. H.
    (2000) Local control of oligodendrocyte development in isolated dorsal mouse spinal cord. J. Neurosci. Res 59, 413–420
    OpenUrlCrossRefPubMedWeb of Science
    1. Timsit S. G.,
    2. Bally-Cuif L.,
    3. Colman D. R.,
    4. Zalc B.
    (1992) DM-20mRNA is expressed during the embryonic development of the nervous system of the mouse. J. Neurochem 58, 1172–1175
    OpenUrlCrossRefPubMedWeb of Science
    1. Timsit S.,
    2. Martinez S.,
    3. Allinquant B.,
    4. Peyron F.,
    5. Puelles L.,
    6. Zalc B.
    (1995) Oligodendrocytes originate in a restricted zone of the embryonic ventral neural tube defined by DM-20 mRNA expression. J. Neurosci 15, 1012–1024
    OpenUrlAbstract
    1. Tsuchida T.,
    2. Ensini M.,
    3. Morton S. B.,
    4. Baldassare M.,
    5. Edlund T.,
    6. Jessell T. M.,
    7. Pfaff S. L.
    (1994) Topographic organization of embryonic motor neurons defined by expression of LIM homeobox genes. Cell 79, 957–970
    OpenUrlCrossRefPubMedWeb of Science
    1. Wada T.,
    2. Kagawa T.,
    3. Ivanova A.,
    4. Zalc B.,
    5. Shiraskai R.,
    6. Murakami F.,
    7. Iemura S.-i.,
    8. Ueno N.,
    9. Ikenaka K.
    (2000) Dorsal spinal cord inhibits oligodendrocyte development. Dev. Biol 227, 42–55
    OpenUrlCrossRefPubMedWeb of Science
    1. Wilkinson D. G.,
    2. Nieto M. A.
    (1993) Detection of messenger RNA by in situ hybridization to tissue sections and whole mounts. Methods Enzymol 225, 361–373
    OpenUrlPubMedWeb of Science
    1. Zhou Q.,
    2. Wang S.,
    3. Anderson D. J.
    (2000) Identification of a novel family of oligodendrocyte lineage-specific basic helix-loop-helix transcription factors. Neuron 25, 331–343
    OpenUrlCrossRefPubMedWeb of Science
Previous ArticleNext Article
Back to top
Previous ArticleNext Article

This Issue

 Download PDF

Email

Thank you for your interest in spreading the word on Development.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Sonic hedgehog contributes to oligodendrocyte specification in the mammalian forebrain
(Your Name) has sent you a message from Development
(Your Name) thought you would like to see the Development web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
JOURNAL ARTICLES
Sonic hedgehog contributes to oligodendrocyte specification in the mammalian forebrain
S. Nery, H. Wichterle, G. Fishell
Development 2001 128: 527-540;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Citation Tools
JOURNAL ARTICLES
Sonic hedgehog contributes to oligodendrocyte specification in the mammalian forebrain
S. Nery, H. Wichterle, G. Fishell
Development 2001 128: 527-540;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Alerts

Please log in to add an alert for this article.

Sign in to email alerts with your email address

Article navigation

  • Top
  • Article
  • Info & metrics
  • PDF

Related articles

Cited by...

More in this TOC section

  • Monofocal origin of telencephalic oligodendrocytes in the anterior entopeduncular area of the chick embryo
  • Genetic dissection of nodal function in patterning the mouse embryo
  • The ASYMMETRIC LEAVES2 gene of Arabidopsis thaliana regulates formation of a symmetric lamina, establishment of venation and repression of meristem-related homeobox genes in leaves
Show more JOURNAL ARTICLES

Similar articles

Other journals from The Company of Biologists

Journal of Cell Science

Journal of Experimental Biology

Disease Models & Mechanisms

Biology Open

Advertisement

The Node is looking for a new Community Manager!

If you're interested in science communication, publishing and the developmental biology community, we're hiring for a new Community Manager for our community site, the Node.

The position is an exciting opportunity to develop an already successful and well-known site, engaging with the academic, publishing and online communities. Find out more and how to apply.


Upcoming special issue: call for papers

The Immune System in Development and Regeneration
Guest editors: Florent Ginhoux and Paul Martin
Submission deadline: 1 September 2021
Publication: Spring 2022

The special issue welcomes Review articles as well as Research articles, and will be widely promoted online and at key global conferences.


The people behind the papers - Clément Dubois, Shivam Gupta, Andrew Mugler and Marie-Anne Félix

A new paper investigates the robustness of neuroblast migration in the C. elegans larva in the face of both genetic and environmental variation. In an interview, the paper's four authors tell us more about the story.


Development presents...

Our successful webinar series continues into 2021, with early-career researchers presenting their papers and a chance to virtually network with the developmental biology community afterwards. Every talk is recorded and since launching in August last year, the series has clocked up almost 10k views on YouTube.

Here, Swann Floc'hlay discusses her work modelling dorsal-ventral axis specification in the sea urchin embryo.

Save your spot at our next session:

14 April
Time: 17:00 BST
Chaired by: François Guillemot

12 May
Time: TBC
Chaired by: Paola Arlotta

Join our mailing list to receive news and updates on the series.

Articles

  • Accepted manuscripts
  • Issue in progress
  • Latest complete issue
  • Issue archive
  • Archive by article type
  • Special issues
  • Subject collections
  • Sign up for alerts

About us

  • About Development
  • About the Node
  • Editors and board
  • Editor biographies
  • Travelling Fellowships
  • Grants and funding
  • Journal Meetings
  • Workshops
  • The Company of Biologists

For authors

  • Submit a manuscript
  • Aims and scope
  • Presubmission enquiries
  • Article types
  • Manuscript preparation
  • Cover suggestions
  • Editorial process
  • Promoting your paper
  • Open Access
  • Biology Open transfer

Journal info

  • Journal policies
  • Rights and permissions
  • Media policies
  • Reviewer guide
  • Sign up for alerts

Contact

  • Contact Development
  • Subscriptions
  • Advertising
  • Feedback
  • Institutional usage stats (logged-in users only)

 Twitter   YouTube   LinkedIn

© 2021   The Company of Biologists Ltd   Registered Charity 277992