Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Accepted manuscripts
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Sign up for alerts
  • About us
    • About Development
    • About the Node
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contacts
    • Subscriptions
    • Advertising
    • Feedback
    • For library administrators
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

User menu

  • Log in
  • Log out

Search

  • Advanced search
Development
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

supporting biologistsinspiring biology

Development

  • Log in
Advanced search

RSS  Twitter  Facebook  YouTube 

  • Home
  • Articles
    • Accepted manuscripts
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Sign up for alerts
  • About us
    • About Development
    • About the Node
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contacts
    • Subscriptions
    • Advertising
    • Feedback
    • For library administrators
JOURNAL ARTICLES
Differential expression and functional analysis of Pitx2 isoforms in regulation of heart looping in the chick
X. Yu, T.R. St Amand, S. Wang, G. Li, Y. Zhang, Y.P. Hu, L. Nguyen, M.S. Qiu, Y.P. Chen
Development 2001 128: 1005-1013;
X. Yu
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
T.R. St Amand
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
S. Wang
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
G. Li
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Y. Zhang
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Y.P. Hu
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
L. Nguyen
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M.S. Qiu
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Y.P. Chen
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & metrics
  • PDF
Loading

Summary

Pitx2, a bicoid-related homeobox gene, plays a crucial role in the left-right axis determination and dextral looping of the vertebrate developing heart. We have examined the differential expression and function of two Pitx2 isoforms (Pitx2a and Pitx2c) that differ in the region 5′ to the homeodomain, in early chick embryogenesis. Northern blot and RT-PCR analyses indicated the existence of Pitx2a and Pitx2c but not Pitx2b in the developing chick embryos. In situ hybridization demonstrated a restricted expression of Pitx2c in the left lateral plate mesoderm (LPM), left half of heart tube and head mesoderm, but its absence in the extra-embryonic tissues where vasculogenesis occurs. RT-PCR experiments revealed that Pitx2a is absent in the left LPM, but is present in the head and extra-embryonic mesoderm. However, ectopic expression of either Pitx2c or Pitx2a via retroviral infection to the right LMP equally randomized heart looping direction. Mapping of the transcriptional activation function to the C terminus that is identical in both isoforms explained the similar results obtained by the gain-of-function approach. In contrast, elimination of Pitx2c expression from the left LMP by antisense oligonucleotide resulted in a randomization of heart looping, while treatment of embryos with antisense oligonucleotide specific to Pitx2a failed to generate similar effect. We further constructed RCAS retroviral vectors expressing dominant negative Pitx2 isoforms in which the C-terminal transcriptional activation domain was replaced by the repressor domain of the Drosophila Engrailed protein (En(r)). Ectopic expression of Pitx2c-En(r), but not Pitx2a-En(r), to the left LPM randomized the heart looping. The results thus demonstrate that Pitx2c plays a crucial role in the left-right axis determination and rightward heart looping during chick embryogenesis.

Reference

    1. Amendt B. A.,
    2. Sutherland L. B.,
    3. Sminar E. V.,
    4. Russo A. F.
    (1998) The molecular basis of Rieger syndrome. J. Biol. Chem 273, 20066–20072
    OpenUrlAbstract/FREE Full Text
    1. Amendt B. A.,
    2. Sutherland L. B.,
    3. Russo A. F.
    (1999) Multifunctional role of the Pitx2 homeodomain protein C-terminal tail. Mol. Cell Biol 19, 7001–7010
    OpenUrlAbstract/FREE Full Text
    1. Arakawa H.,
    2. Nakamura T.,
    3. Zhadanov A. B.,
    4. Fidanza V.,
    5. Yano T.,
    6. Bullrich F.,
    7. Shimizu M.,
    8. Blechman J.,
    9. Mazo A.,
    10. Canaani E.,
    11. Croce C. M.
    (1998) Identification and characterization of the ARP1 gene, a target for the human acute leukemia ALL1 gene. Proc. Natl. Acad. Sci. USA 95, 4573–4578
    OpenUrlAbstract/FREE Full Text
    1. Bao Z.-Z.,
    2. Bruneau B. G.,
    3. Seidman J. G.,
    4. Seidman C. E.,
    5. Cepko C. L.
    (1999) Regulation of chamber-specific gene expression in the developing heart by Irx4. Science 283, 1161–1164
    OpenUrlAbstract/FREE Full Text
    1. Bisgrove B.,
    2. Essner J.,
    3. Yost H. J.
    (1999) Regulation of midline development by antagonism of lefty and nodal signaling. Development 126, 3253–3262
    OpenUrlAbstract
    1. Boettger T.,
    2. Wittler L. M.,
    3. Kessel M.
    (1999) FGF8 functions in the specification of the right body side of the chick. Curr. Biol 9, 277–280
    OpenUrlCrossRefPubMedWeb of Science
    1. Campoine M.,
    2. Steinbeisser H.,
    3. Schweickert A.,
    4. Deissler K.,
    5. van Bebber F.,
    6. Lowe L.,
    7. Nowotschin S.,
    8. Viebahn C.,
    9. Haffter P.,
    10. et al.
    (1999) The homeobox gene Pitx2: mediator of asymmetric left-right signaling in vertebrate heart and gut looping. Development 126, 1225–1234
    OpenUrlAbstract
    1. Chazaud C.,
    2. Chambon P.,
    3. Dolle P.
    (1999) Retinoic acid is required in the mouse embryo for left-right asymmetry determination and heart morphogenesis. Development 126, 2589–2596
    OpenUrlAbstract
    1. Chen Y. P.,
    2. Solursh M.
    (1992) Comparison of Hensen's node and retinoic acid in secondary axis induction in the early chick embryo. Dev. Dyn 195, 142–151
    OpenUrlPubMed
    1. Collignon J.,
    2. Varlet I.,
    3. Robertson E. J.
    (1996) Relationship between asymmetric nodal expression and the direction of embryonic turning. Nature 381, 155–158
    OpenUrlCrossRefPubMedWeb of Science
    1. Essner J. J.,
    2. Branford W. W.,
    3. Zhang J.,
    4. Yost H. J.
    (2000) Mesendoderm and left-right brain, heart and gut development are differentially regulated by pitx2 isoforms. Development 127, 1081–1093
    OpenUrlAbstract
    1. Furukawa T.,
    2. Morrow E. M.,
    3. Cepko C. L.
    (1997) Crx, a novel otx- like homeobox gene, shows photoreceptor-specific expression and regulates photoreceptor differentiation. Cell 91, 531–541
    OpenUrlCrossRefPubMedWeb of Science
    1. Gage P. J.,
    2. Camper S. A.
    (1997) Pituitary homeobox 2, a novel member of the bicoid -related family of homeobox genes, is a potential regulator of anterior structure formation. Hum. Mol. Genet 6, 457–464
    OpenUrlAbstract/FREE Full Text
    1. Gage P. J.,
    2. Suh H.,
    3. Camper S. A.
    (1999) Dosage requirement of Pitx2 for development of multiple organs. Development 126, 4643–4651
    OpenUrlAbstract
    1. Hamburger V.,
    2. Hamilton H. L.
    (1951) A series of normal stages in the development of the chick embryo. J. Morphol 88, 49–92
    OpenUrlCrossRefPubMedWeb of Science
    1. Harvey R. P.
    (1998) Links in the left/right axial pathway. Cell 94, 273–276
    OpenUrlPubMedWeb of Science
    1. Hyatt B. A.,
    2. Lohr J. L.,
    3. Yost H. J.
    (1996) Initiation of vertebrate left-right axis formation by maternal Vg1. Nature 384, 62–65
    OpenUrlCrossRefPubMedWeb of Science
    1. Isaac A.,
    2. Sargent M. G.,
    3. Cooke J.
    (1997) Control of vertebrate left-right asymmetry by a Snail-related zinc finger gene. Science 275, 1301–1304
    OpenUrlAbstract/FREE Full Text
    1. King T.,
    2. Brown N. A.
    (1999) Antagonists on the left flank. Nature 401, 222–223
    OpenUrlCrossRefPubMed
    1. Kitamura K.,
    2. Miura H.,
    3. Miyagawa-Tomita S.,
    4. Yanazawa M.,
    5. Katoh-Fukui Y.,
    6. Suzuki R.,
    7. Ohuchi H.,
    8. Suehiro A.,
    9. Motegi Y.,
    10. Nakahara Y.,
    11. et al.
    (1999) Mouse Pitx2 deficiency leads to anomalies of the ventral body wall, heart, extra-and periocular mesoderm and right pulmonary isomerism. Development 126, 5749–5758
    OpenUrlAbstract
    1. Lamonerie T.,
    2. Tremblay J. J.,
    3. Lanctôt C.,
    4. Therrien M.,
    5. Gauthier Y.,
    6. Drouin J.
    (1996) Ptx1, a bicoid -related homeo box transcription factor involved in transcription of the pro-opiomelanocortin gene. Genes Dev 10, 1284–1295
    OpenUrlAbstract/FREE Full Text
    1. Lanctôt C.,
    2. Lamolet B.,
    3. Drouin J.
    (1997) The bicoid -related homeoprotein Ptx1 defines the most anterior domain of the embryo and differntiates posterior from anterior lateral mesoderm. Development 124, 2807–2817
    OpenUrlAbstract
    1. Levin M.,
    2. Johnson R. L.,
    3. Stern C. D.,
    4. Kuehn M.,
    5. Tabin C. J.
    (1995) A molecular pathway determining left-right asymmetry in chick embryogenesis. Cell 82, 803–814
    OpenUrlCrossRefPubMedWeb of Science
    1. Lillie J. W.,
    2. Green M. R.
    (1989) Transcription activation by the adenovirus Ela protein. Nature 338, 39–44
    OpenUrlCrossRefPubMed
    1. Lin C. R.,
    2. Kioussi C.,
    3. O'Connell S.,
    4. Briata P.,
    5. Szeto D.,
    6. Liu F.,
    7. Izpisúa-Belmote J. C.,
    8. Rosenfeld M. G.
    (1999) Pitx2 regulates lung asymmetry, cardiac positioning and pituitary and tooth development. Nature 401, 279–282
    OpenUrlCrossRefPubMedWeb of Science
    1. Logan M.,
    2. Pagán-Westphal S. M.,
    3. Smith D. M.,
    4. Paganessi L.,
    5. Tabin C. J.
    (1998) The transcription factor Pitx2 mediates situs-specific morphogenesis in response to left-right asymmetric signals. Cell 94, 307–317
    OpenUrlCrossRefPubMedWeb of Science
    1. Lowe L. A.,
    2. Supp D. M.,
    3. Sampath K.,
    4. Yokoyama T.,
    5. Wright C. V. E.,
    6. Potter S. S.,
    7. Overbeek P.,
    8. Kuehn M. R.
    (1996) Conserved left-right asymmetry of nodal expression and alterations in murine situs inversus. Nature 381, 158–161
    OpenUrlCrossRefPubMedWeb of Science
    1. Lu M. F.,
    2. Pressman C.,
    3. Dyer R.,
    4. Johnson R. L.,
    5. Martin J. F.
    (1999) Function of Rieger syndrome gene in left-right asymmetry and craniofacial development. Nature 401, 276–278
    OpenUrlCrossRefPubMedWeb of Science
    1. Ma J.,
    2. Ptashne M.
    (1987) Deletion analysis of GAL4 defines two transcriptional activating segments. Cell 48, 847–853
    OpenUrlCrossRefPubMedWeb of Science
    1. Meno C.,
    2. Saijoh Y.,
    3. Fujii H.,
    4. Ikeda M.,
    5. Yokoyama T.,
    6. Yokoyama M.,
    7. Toyoda Y.,
    8. Hamada H.
    (1996) Left-right asymmetric expression of the TGF-family member lefty in mouse embryos. Nature 381, 151–155
    OpenUrlCrossRefPubMedWeb of Science
    1. Meno C.,
    2. Shimono A.,
    3. Saijoh Y.,
    4. Yashiro K.,
    5. Mochida K.,
    6. Ohishi S.,
    7. Noji S.,
    8. Kondoh H.,
    9. Hamada H.
    (1998) Lefty-1 is required for left-right determination as a regulator of lefty-2 and nodal. Cell 94, 287–297
    OpenUrlCrossRefPubMedWeb of Science
    1. Meyers E. N.,
    2. Martin G. R.
    (1999) Differences in left-right axis pathways in mouse and chick: Functions of FGF8 and SHH. Science 285, 403–406
    OpenUrlAbstract/FREE Full Text
    1. Mucchieli M.-L.,
    2. Martinez S.,
    3. Pattyn A.,
    4. Goridis C.,
    5. Brunet J.-F.
    (1996) Otlx2, an Otx -related homeobox gene expressed in the pituitary gland and in a restricted pattern in the forebrain. Mol. Cell. Neurosci 8, 258–271
    OpenUrlCrossRefPubMedWeb of Science
    1. New D. A. T.
    (1955) A new technique for the cultivation of the chick embryo invitro. J. Embryol. Exp. Morphol 3, 326–331
    OpenUrl
    1. Piedra M. E.,
    2. Icardo J. M.,
    3. Albajar M.,
    4. Rodriguez-Rey J.-C.,
    5. Ros M. A.
    (1998) Pitx2 participates in the late phase of the pathway controlling left-right asymmetry. Cell 94, 319–324
    OpenUrlCrossRefPubMedWeb of Science
    1. Ramsdell A. F.,
    2. Yost H. J.
    (1998) Molecular mechanisms of vertebrate left-right development. Trends Genet 14, 459–465
    OpenUrlCrossRefPubMedWeb of Science
    1. Rodriguez-Esteban C.,
    2. Capdevila J.,
    3. Economides A. N.,
    4. Pascual J.,
    5. Ortiz A.,
    6. Izpisúa-Belmonte J. C.
    (1999) The novel Cer-like protein Caronte mediates the establishment of embryonic left-right asymmetry. Nature 401, 243–251
    OpenUrlCrossRefPubMedWeb of Science
    1. Ryan A. K.,
    2. Blumberg B.,
    3. Rodriguez-Esteban C.,
    4. Yonei-Tamura S.,
    5. Tamura K.,
    6. Tsukui T.,
    7. de la Peña J.,
    8. Sabbagh W.,
    9. Greenwald J.,
    10. et al.
    (1998) Pitx2 determines left-right asymmetry of internal organs in vertebrates. Nature 394, 545–551
    OpenUrlCrossRefPubMedWeb of Science
    1. Sampath K.,
    2. Cheng A. M. S.,
    3. Frisch A.,
    4. Wright C. V. E.
    (1997) Functional differences among Xenopus nodal-related genes in left-right axis determination. Development 124, 3293–3302
    OpenUrlAbstract
    1. Schneider A.,
    2. Mijalski T.,
    3. Schlange T.,
    4. Dai W.,
    5. Overbeek P.,
    6. Arnold H. H.,
    7. Brand T.
    (1999). The homeobox gene Nkx 3.2 is a target of left-right signaling and is expressed on opposite sides in chick and mouse embryos. Curr. Biol 9, 911–914
    OpenUrlCrossRefPubMed
    1. Schweickert A.,
    2. Campione M.,
    3. Steinbeisser H.,
    4. Blum M.
    (2000) Pitx2 isoforms: involvement of Pitx2c but not Pitx2a and Pitx2b in vertebrate left-right asymmetry. Mech. Dev 90, 41–51
    OpenUrlCrossRefPubMedWeb of Science
    1. Sefton M.,
    2. Sanchez S.,
    3. Nieto M. A.
    (1998) Conserved and divergent roles for members of the Snail family of transcription factor in the chick and mouse embryo. Development 125, 3111–3121
    OpenUrlAbstract
    1. Semina E. V.,
    2. Reiter R. S.,
    3. Leysens N. J.,
    4. Alward M. L. W.,
    5. Small K. W.,
    6. Datson N. A.,
    7. Siegel-Bartelt J.,
    8. Bierke-Nelson D.,
    9. Bitoun P.,
    10. Zabel B. U.,
    11. et al.
    (1996) Cloning and characterization of a novel bicoid-related homeobox transcription factor gene, RIEG, involved in Rieger syndrome. Nat. Genet 14, 392–399
    OpenUrlCrossRefPubMedWeb of Science
    1. Semina E. V.,
    2. Reiter R. S.,
    3. Murray J. C.
    (1997) Isolation of a new homeobox gene belonging to the Pitx/RIEG family: expression during lens development and mapping to the aphakia region on mouse chromosome 19. Hum. Mol. Genet 6, 2109–2116
    OpenUrlAbstract/FREE Full Text
    1. Semina E. V.,
    2. Reiter R. S.,
    3. Murray J.
    (1998) A new human homeobox gene OGI2X is a member of the most conserved homeobox gene family and is expressed during heart development in mouse. Hum. Mol. Genet 7, 415–422
    OpenUrlAbstract/FREE Full Text
    1. Smith S. M.,
    2. Dickman E. D.,
    3. Thompson R. P.,
    4. Sinning A. R.,
    5. Wunsch A. M.,
    6. Markwald R. R.
    (1997) Retinoic acid directs cardiac laterality and the expression of early markers of precardiac asymmetry. Dev. Biol 182, 162–171
    OpenUrlCrossRefPubMedWeb of Science
    1. Srivastava D.,
    2. Cserjesi P.,
    3. Olson E. N.
    (1995) A subclass of bHLH proteins required for cardiac morphogenesis. Science 270, 1995–1999
    OpenUrlAbstract/FREE Full Text
    1. St Amand T. R.,
    2. Ra J.,
    3. Zhang Y.,
    4. Hu Y.,
    5. Baber S.,
    6. Qiu M.-S.,
    7. Chen Y. P.
    (1998) Cloning and expression pattern of chicken Pitx2: a new component in the SHH signaling pathway controlling embryonic heart looping. Biochem. Biophys. Res. Commun 247, 100–105
    OpenUrlCrossRefPubMedWeb of Science
    1. St Amand T. R.,
    2. Zhang Y.,
    3. Semina E. V.,
    4. Zhao X.,
    5. Hu Y.,
    6. Nguyen L.,
    7. Murray J. C.,
    8. Chen Y. P.
    (2000) Antagonistic signals between BMP4 and FGF8 define the expression of Pitx1 and Pitx2 in mouse tooth-forming anlage. Dev. Biol 217, 323–332
    OpenUrlCrossRefPubMedWeb of Science
    1. Szeto D. P.,
    2. Ryan A. K.,
    3. O'Connell S. M.,
    4. Rosenfeld M. G.
    (1996) P-OTX: a Pit-1-interacting homeodomain factor expressed during anterior pituitary gland development. Proc. Natl. Acad. Sci. USA 93, 7706–7710
    OpenUrlAbstract/FREE Full Text
    1. Wasiak S.,
    2. Lohnes D.
    (1999) Retinoic acid affects left-right patterning. Dev. Biol 215, 332–342
    OpenUrlCrossRefPubMed
    1. Yokouchi Y.,
    2. Vogan K. J.,
    3. Pearse R. V., II,
    4. Tabin C. J.
    (1999) Antagonistic signaling by Caronte, a novel Cerberus -related gene, establishes left-right asymmetric gene expression. Cell 98, 573–583
    OpenUrlCrossRefPubMedWeb of Science
    1. Yoshioka H.,
    2. Meno C.,
    3. Koshiba K.,
    4. Sugihara M.,
    5. Itoh H.,
    6. Ishimaru Y.,
    7. Inoue T.,
    8. Ohuchi H.,
    9. Semina E. V.,
    10. Murray J. C.,
    11. et al.
    (1998) Pitx2. a bicoid -type homeobox gene, is involved in a lefty-signaling pathway in determination of left-right asymmetry. Cell 94, 299–305
    OpenUrlCrossRefPubMedWeb of Science
    1. Yost H. J.
    (1999) Diverse initiation in a conserved left-right pathway?. Curr. Opin. Genet. Dev 9, 422–426
    OpenUrlCrossRefPubMedWeb of Science
    1. Zhu L.,
    2. Marvin M. J.,
    3. Gardiner A.,
    4. Lassar A.,
    5. Mercola M.,
    6. Stern C. D.,
    7. Levin M.
    (1999) Cerberus regulates left-right asymmetry of the embryonic head and heart. Curr. Biol 9, 931–938
    OpenUrlCrossRefPubMedWeb of Science
    1. Zile M.,
    2. Kostetskii I.,
    3. Yuan S.,
    4. Kostetskaia E.,
    5. St Amand T. R.,
    6. Chen Y. P.,
    7. Jiang W.
    (2000) Retinoid signaling is required to complete vertebrate cardiac left-right asymmetry pathway. Dev. Biol 223, 323–338
    OpenUrlCrossRefPubMedWeb of Science
Previous ArticleNext Article
Back to top
Previous ArticleNext Article

This Issue

 Download PDF

Email

Thank you for your interest in spreading the word on Development.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Differential expression and functional analysis of Pitx2 isoforms in regulation of heart looping in the chick
(Your Name) has sent you a message from Development
(Your Name) thought you would like to see the Development web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
JOURNAL ARTICLES
Differential expression and functional analysis of Pitx2 isoforms in regulation of heart looping in the chick
X. Yu, T.R. St Amand, S. Wang, G. Li, Y. Zhang, Y.P. Hu, L. Nguyen, M.S. Qiu, Y.P. Chen
Development 2001 128: 1005-1013;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Citation Tools
JOURNAL ARTICLES
Differential expression and functional analysis of Pitx2 isoforms in regulation of heart looping in the chick
X. Yu, T.R. St Amand, S. Wang, G. Li, Y. Zhang, Y.P. Hu, L. Nguyen, M.S. Qiu, Y.P. Chen
Development 2001 128: 1005-1013;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Alerts

Please log in to add an alert for this article.

Sign in to email alerts with your email address

Article navigation

  • Top
  • Article
  • Info & metrics
  • PDF

Related articles

Cited by...

More in this TOC section

  • Germline and developmental roles of the nuclear transport factor importin (α)3 in C. elegans
  • Monofocal origin of telencephalic oligodendrocytes in the anterior entopeduncular area of the chick embryo
  • Genetic dissection of nodal function in patterning the mouse embryo
Show more JOURNAL ARTICLES

Similar articles

Other journals from The Company of Biologists

Journal of Cell Science

Journal of Experimental Biology

Disease Models & Mechanisms

Biology Open

Advertisement

An interview with Swathi Arur

Swathi Arur joined the team at Development as an Academic Editor in 2020. Her lab uses multidisciplinary approaches to understand female germline development and fertility. We met with her over Zoom to hear more about her life, her career and her love for C. elegans.


Jim Wells and Hanna Mikkola join our team of Editors

We are pleased to welcome James (Jim) Wells and Hanna Mikkola to our team of Editors. Jim joins us a new Academic Editor, taking over from Gordan Keller, and Hanna joins our team of Associate Editors. Find out more about their research interests and areas of expertise.


New funding scheme supports sustainable events

As part of our Sustainable Conferencing Initiative, we are pleased to announce funding for organisers that seek to reduce the environmental footprint of their event. The next deadline to apply for a Scientific Meeting grant is 26 March 2021.


Read & Publish participation continues to grow

“I’d heard of Read & Publish deals and knew that many universities, including mine, had signed up to them but I had not previously understood the benefits that these deals bring to authors who work at those universities.”

Professor Sally Lowell (University of Edinburgh) shares her experience of publishing Open Access as part of our growing Read & Publish initiative. We now have over 150 institutions in 15 countries and four library consortia taking part – find out more and view our full list of participating institutions.


Upcoming special issues

Imaging Development, Stem Cells and Regeneration
Submission deadline: 30 March 2021
Publication: mid-2021

The Immune System in Development and Regeneration
Guest editors: Florent Ginhoux and Paul Martin
Submission deadline: 1 September 2021
Publication: Spring 2022

Both special issues welcome Review articles as well as Research articles, and will be widely promoted online and at key global conferences.


Development presents...

Our successful webinar series continues into 2021, with early-career researchers presenting their papers and a chance to virtually network with the developmental biology community afterwards. Here, Michèle Romanos talks about her new preprint, which mixes experimentation in quail embryos and computational modelling to understand how heterogeneity in a tissue influences cell rate.

Save your spot at our next session:

10 March
Time: 9:00 (GMT)
Chaired by: Thomas Lecuit

Join our mailing list to receive news and updates on the series.

Articles

  • Accepted manuscripts
  • Latest complete issue
  • Issue archive
  • Archive by article type
  • Special issues
  • Subject collections
  • Sign up for alerts

About us

  • About Development
  • About the Node
  • Editors and board
  • Editor biographies
  • Travelling Fellowships
  • Grants and funding
  • Journal Meetings
  • Workshops
  • The Company of Biologists

For authors

  • Submit a manuscript
  • Aims and scope
  • Presubmission enquiries
  • Article types
  • Manuscript preparation
  • Cover suggestions
  • Editorial process
  • Promoting your paper
  • Open Access
  • Biology Open transfer

Journal info

  • Journal policies
  • Rights and permissions
  • Media policies
  • Reviewer guide
  • Sign up for alerts

Contact

  • Contact Development
  • Subscriptions
  • Advertising
  • Feedback
  • Institutional usage stats (logged-in users only)

 Twitter   YouTube   LinkedIn

© 2021   The Company of Biologists Ltd   Registered Charity 277992