Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Sign up for alerts
  • About us
    • About Development
    • About the Node
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contacts
    • Subscriptions
    • Advertising
    • Feedback
    • Institutional usage stats (logged-in users only)
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

User menu

  • Log in
  • Log out

Search

  • Advanced search
Development
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

supporting biologistsinspiring biology

Development

  • Log in
Advanced search

RSS  Twitter  Facebook  YouTube 

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Sign up for alerts
  • About us
    • About Development
    • About the Node
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contacts
    • Subscriptions
    • Advertising
    • Feedback
    • Institutional usage stats (logged-in users only)
JOURNAL ARTICLES
A role for the EphA family in the topographic targeting of vomeronasal axons
B. Knoll, K. Zarbalis, W. Wurst, U. Drescher
Development 2001 128: 895-906;
B. Knoll
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
K. Zarbalis
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
W. Wurst
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
U. Drescher
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & metrics
  • PDF
Loading

Summary

We have investigated the role of the Eph family of receptor tyrosine kinases and their ligands in the establishment of the vomeronasal projection in the mouse. Our data show intriguing differential expression patterns of ephrin-A5 on vomeronasal axons and of EphA6 in the accessory olfactory bulb (AOB), such that axons with high ligand concentration project onto regions of the AOB with high receptor concentration and vice versa. These data suggest a mechanism for development of this projection that is the opposite of the repellent interaction between Eph receptors and ligands observed in other systems. In support of this idea, when given the choice of whether to grow on lanes containing EphA-F(c)/laminin or F(c)/laminin protein (in the stripe assay), vomeronasal axons prefer to grow on EphA-F(c)/laminin. Analysis of ephrin-A5 mutant mice revealed a disturbance of the topographic targeting of vomeronasal axons to the AOB. In summary, these data, which are derived from in vitro and in vivo experiments, indicate an important role of the EphA family in setting up the vomeronasal projection.

Reference

    1. Bargmann C. I.
    (1999) A complex sensory map for pheromones. Neuron 22, 640–642
    OpenUrlCrossRefPubMedWeb of Science
    1. Belluscio L.,
    2. Koentges G.,
    3. Axel R.,
    4. Dulac C.
    (1999) A map of pheromone receptor activation in the mammalian brain. Cell 97, 209–220
    OpenUrlCrossRefPubMedWeb of Science
    1. Berghard A.,
    2. Buck L. B.
    (1996) Sensory transduction in vomeronasal neurons: evidence for G alpha o, G alpha i2, and adenylyl cyclase II as major components of a pheromone signaling cascade. J. Neurosci 16, 909–918
    OpenUrlAbstract/FREE Full Text
    1. Berghard A.,
    2. Buck L. B.,
    3. Liman E. R.
    (1996) Evidence for distinct signaling mechanisms in two mammalian olfactory sense organs. Proc. Natl. Acad. Sci. USA 93, 2365–2369
    OpenUrlAbstract/FREE Full Text
    1. Brown D. A.,
    2. London E.
    (2000) Structure and function of sphingolipid-and cholesterol-rich membrane rafts. J. Biol. Chem 275, 17221–17224
    OpenUrlFREE Full Text
    1. Bruckner K.,
    2. Pasquale E. B.,
    3. Klein R.
    (1997) Tyrosine phosphorylation of transmembrane ligands for Eph receptors. Science 275, 1640–1643
    OpenUrlAbstract/FREE Full Text
    1. Bruckner K.,
    2. Klein R.
    (1998) Signaling by Eph receptors and their ephrin ligands. Curr. Opin. Neurobiol 8, 375–382
    OpenUrlCrossRefPubMedWeb of Science
    1. Buck L. B.
    (2000) The molecular architecture of odor and pheromone sensing in mammals. Cell 100, 611–618
    OpenUrlCrossRefPubMedWeb of Science
    1. Buj-Bello A.,
    2. Adu J.,
    3. Pinon L. G.,
    4. Horton A.,
    5. Thompson J.,
    6. Rosenthal A.,
    7. Chinchetru M.,
    8. Buchman V. L.,
    9. Davies A. M.
    (1997) Neurturin responsiveness requires a GPI-linked receptor and the Ret receptor tyrosine kinase. Nature 387, 721–724
    OpenUrlCrossRefPubMed
    1. Callahan C. A.,
    2. Thomas J. B.
    (1994) Tau-beta-galactosidase, an axon-targeted fusion protein. Proc. Natl. Acad. Sci. USA 91, 5972–5976
    OpenUrlAbstract/FREE Full Text
    1. Cheng H. J.,
    2. Flanagan J. G.
    (1994) Identification and cloning of ELF-1, a developmentally expressed ligand for the Mek4 and Sek receptor tyrosine kinases. Cell 79, 157–168
    OpenUrlCrossRefPubMedWeb of Science
    1. Ciossek T.,
    2. Monschau B.,
    3. Kremoser C.,
    4. Löschinger J.,
    5. Lang S.,
    6. Muller B. K.,
    7. Bonhoeffer F.,
    8. Drescher U.
    (1998) Eph receptor-ligand interactions are necessary for guidance of retinal ganglion cell axons in vitro. Eur. J. Neurosci 10, 1574–1580
    OpenUrlCrossRefPubMedWeb of Science
    1. Daniel T. O.,
    2. Stein E.,
    3. Cerretti D. P.,
    4. St. John P. L.,
    5. Robert B. L.,
    6. Abrahamson D. R.
    (1996) ELF and LERK-2 in developing kidney and microvascular endothelial assembly. Kidney Int 50, 73–.
    OpenUrl
    1. Davy A.,
    2. Gale N. W.,
    3. Murray E. W.,
    4. Klinghofer R. A.,
    5. Soriano P.,
    6. Feuerstein C.,
    7. Robbins S. M.
    (1999) Compartmentalized signaling by GPI-anchored ephrinA5 requires the fyn tyrosine kinase to regulate cellular adhesion. Gen. Dev 13, 3125–3135
    OpenUrlAbstract/FREE Full Text
    1. Davy A.,
    2. Feuerstein C.,
    3. Robbins S. M.
    (2000) Signaling within acaveolae-like membrane microdomain in human neuroblastoma cells in response to fibroblast growth factor. J. Neurochem 74, 676–683
    OpenUrlCrossRefPubMedWeb of Science
    1. Davy A.,
    2. Robbins S. M.
    (2000) EphrinA5 modulates cell adhesion andmorphology in an integrin-dependent manner. EMBO J 19, 5396–5405
    OpenUrlAbstract
    1. Doherty P.,
    2. Singh A.,
    3. Rimon G.,
    4. Bolsover S. R.,
    5. Walsh F. S.
    (1993) Thy-1 antibody triggered neurite outgrowth requires an influx of calcium into neurons via N-and L-type calcium channels. J. Biol. Chem 122, 181–189
    OpenUrl
    1. Drescher U.,
    2. Bonhoeffer F.,
    3. Muller B. K.
    (1997) The Eph family in retinal axon guidance. Curr. Opin. Neurobiol 7, 75–80
    OpenUrlCrossRefPubMedWeb of Science
    1. Dulac C.
    (2000) Sensory coding of pheromone signals in mammals. Curr. Opin. Neurobiol 10, 511–518
    OpenUrlCrossRefPubMedWeb of Science
    1. Dulac C.,
    2. Axel R.
    (1995) A novel family of genes encoding putative pheromone receptors in mammals. Cell 83, 195–206
    OpenUrlCrossRefPubMedWeb of Science
    1. Economides A. N.,
    2. Ravetch J. V.,
    3. Yancopoulos G. D.,
    4. Stahl N.
    (1995) Designer cytokines: targeting actions to cells of choise. Science 270, 1351–1353
    OpenUrlAbstract/FREE Full Text
    1. Flanagan J. G.,
    2. Leder P.
    (1990) The kit ligand: a cell surface molecule altered in steel mutant fibroblasts. Cell 63, 185–194
    OpenUrlCrossRefPubMedWeb of Science
    1. Flanagan J. G.,
    2. Vanderhaeghen P.
    (1998) The ephrins and Eph receptors in neural development. Annu. Rev. Neurosci 21, 309–345
    OpenUrlCrossRefPubMedWeb of Science
    1. Frisen J.,
    2. Holmberg J.,
    3. Barbacid M.
    (1999) Ephrins and their Eph receptors: multitalented directors of embryonic development. EMBO J 18, 5159–65
    OpenUrlFREE Full Text
    1. Gale N. W.,
    2. Holland S. J.,
    3. Valenzuela D. M.,
    4. Flenniken A.,
    5. Pan L.,
    6. Ryan T. E.,
    7. Henkemeyer M.,
    8. Strebhardt K.,
    9. Hirai H.,
    10. Wilkinson D. G.,
    11. Pawson T.,
    12. Yancopoulos G. D.
    (1996) Eph receptors and ligands comprise two major specificity subclasses and are reciprocally compartmentalized during embryogenesis. Neuron 17, 9–19
    OpenUrlCrossRefPubMedWeb of Science
    1. Gierer A.
    (1998) Possible involvement of gradients in guidance of receptor cell axons towards their target position on the olfactory bulb. Eur. J. Neurosci 10, 388–391
    OpenUrlCrossRefPubMedWeb of Science
    1. Grant P.,
    2. Tseng D.,
    3. Gould R. M.,
    4. Gainer H.,
    5. Pant H. C.
    (1995) Expression of neurofilament proteins during development of the nervous system in the squid Loligo pealei. J. Comp. Neurol 356, 311–326
    OpenUrlCrossRefPubMedWeb of Science
    1. Halpern M.
    (1987) The organization and function of the vomeronasal system. Annu. Rev. Neurosci 10, 325–362
    OpenUrlCrossRefPubMedWeb of Science
    1. Henkemeyer M.,
    2. Orioli D.,
    3. Henderson J. T.,
    4. Saxton T. M.,
    5. Roder J.,
    6. Pawson T.,
    7. Klein R.
    (1996) Nuk controls pathfinding of commissural axons in the mammalian central nervous system. Cell 86, 35–46
    OpenUrlCrossRefPubMedWeb of Science
    1. Herrada G.,
    2. Dulac C.
    (1997) A novel family of putative pheromone receptors in mammals with a topographically organized and sexually dimorphic distribution. Cell 90, 763–773
    OpenUrlCrossRefPubMedWeb of Science
    1. Hinds J. W.
    (1968) Autoradiographic study of histogenesis in the mouse olfactory bulb. I. Time of origin of neurons and neuroglia. J. Comp. Neurol 134, 287–304
    OpenUrlCrossRefPubMedWeb of Science
    1. Holash J. A.,
    2. Soans C.,
    3. Chong L. D.,
    4. Shao H.,
    5. Dixit V. M.,
    6. Pasquale E. B.
    (1997) Reciprocal expression of the Eph receptor Cek5 and its ligand(s) in the early retina. Dev. Biol 182, 256–269
    OpenUrlCrossRefPubMedWeb of Science
    1. Holder N.,
    2. Klein R.
    (1999) Eph receptors and ephrins: effectors of morphogenesis. Development 126, 2033–2044
    OpenUrlAbstract
    1. Holland S. J.,
    2. Gale N. W.,
    3. Mbamalu G.,
    4. Yancopoulos G. D.,
    5. Henkemeyer M.,
    6. Pawson T.
    (1996) Bidirectional signalling through the eph-family receptor Nuk and its transmembrane ligands. Nature 383, 722–725
    OpenUrlCrossRefPubMedWeb of Science
    1. Holland S. J.,
    2. Peles E.,
    3. Pawson T.,
    4. Schlessinger J.
    (1998) Cell-contact-dependent signalling in axon growth and guidance: Eph receptor tyrosine kinases and receptor protein tyrosine phosphatase beta. Curr. Opin. Neurobiol 8, 117–127
    OpenUrlCrossRefPubMedWeb of Science
    1. Holmberg J.,
    2. Clarke D. L.,
    3. Frisen J.
    (2000) Regulation of repulsion versus adhesion by different splice forms of an Eph receptor. Nature 408, 203–206
    OpenUrlCrossRefPubMedWeb of Science
    1. Hornberger M. R.,
    2. Dutting D.,
    3. Ciossek T.,
    4. Yamada T.,
    5. Handwerker C.,
    6. Lang S.,
    7. Weth F.,
    8. Huf J.,
    9. Wessel R.,
    10. Logan C.,
    11. Tanaka H.,
    12. Drescher U.
    (1999) Modulation of EphA receptor function by coexpressed ephrinA ligands on retinal ganglion cell axons. Neuron 22, 731–742
    OpenUrlCrossRefPubMedWeb of Science
    1. Horowitz L. F.,
    2. Montmayeur J. P.,
    3. Echelard Y.,
    4. Buck L. B.
    (1999) A genetic approach to trace neural circuits. Proc. Natl. Acad. Sci. USA 96, 3194–3199
    OpenUrlAbstract/FREE Full Text
    1. Huynh-Do U.,
    2. Stein E.,
    3. Lane A. A.,
    4. Liu H.,
    5. Ceretti D. P.,
    6. Daniel T. O.
    (1999) Surface densities of ephrin-B1 determine EphB1-coupled activation of cell attachment through avβ3 and a5b1 integrins. EMBO J 18, 2165–2173
    OpenUrlAbstract
    1. Ichikawa M.,
    2. Takami S.,
    3. Osada T.,
    4. Graziadei P.
    (1994) Differential development of binding sites of two lectins in the vomeronasal axons of the rat accessory olfactoy bulb. Dev. Brain Res 78, 1–9
    OpenUrlCrossRefPubMed
    1. Imamura M.,
    2. Mori K.,
    3. Fujita S.,
    4. Obata K.
    (1985) Immunocytochemical identification of subgroups of vomeronasal nerve fibers and their segregated terminations in the accessory olfactory bulb. Brain Res 326, 362–366
    OpenUrlCrossRefPubMedWeb of Science
    1. Jia C.,
    2. Halpern M.
    (1996) Subclasses of vomeronasal receptor neurons: differential expression of G proteins (Gi alpha 2 and G(o alpha)) and segregated projections to the accessory olfactory bulb. Brain Res 719, 117–128
    OpenUrlCrossRefPubMedWeb of Science
    1. Keverne E. B.
    (1999) The vomeronasal organ. Science 286, 716–720
    OpenUrlAbstract/FREE Full Text
    1. Krieger J.,
    2. Schmitt A.,
    3. Lobel D.,
    4. Gudermann T.,
    5. Schultz G.,
    6. Breer H.,
    7. Boekhoff I.
    (1999) Selective activation of G protein subtypes in the vomeronasal organ upon stimulation with urine-derived compounds. J. Biol. Chem 274, 4655–4662
    OpenUrlAbstract/FREE Full Text
    1. Massague J.
    (1996) Crossing receptor boundaries. Nature 382, 29–30
    OpenUrlCrossRefPubMedWeb of Science
    1. Matsunami H.,
    2. Buck L. B.
    (1997) A multigene family encoding a diverse array of putative pheromone receptors in mammals. Cell 90, 775–784
    OpenUrlCrossRefPubMedWeb of Science
    1. Mellitzer G.,
    2. Xu Q.,
    3. Wilkinson D. G.
    (1999) Eph receptors and ephrins restrict cell intermingling and communication. Nature 400, 77–81
    OpenUrlCrossRefPubMedWeb of Science
    1. Mellitzer G.,
    2. Xu Q.,
    3. Wilkinson D. G.
    (2000) Control of cell behaviour by signalling through Eph receptors and ephrins. Curr. Opin. Neurobiol 10, 400–408
    OpenUrlCrossRefPubMedWeb of Science
    1. Mombaerts P.,
    2. Wang F.,
    3. Dulac C.,
    4. Chao S. K.,
    5. Nemes A.,
    6. Mendelsohn M.,
    7. Edmondson J.,
    8. Axel R.
    (1996) Visualizing an olfactory sensory map. Cell 87, 675–686
    OpenUrlCrossRefPubMedWeb of Science
    1. Muller B. K.
    (1999) Growth cone guidance: first steps towards a deeper understanding. Annu. Rev. Neurosci 22, 351–388
    OpenUrlCrossRefPubMedWeb of Science
    1. O'Leary D. D. M.,
    2. Wilkinson D. G.
    (1999) Eph receptors and ephrins in neural development. Curr. Opin. Neurobiol 9, 65–73
    OpenUrlCrossRefPubMedWeb of Science
    1. O'Leary D. D. M.,
    2. Yates P. A.,
    3. McLaughlin T.
    (1999) Molecular development of sensory maps: representing sights and smells in the brain. Cell 98, 255–269
    1. Pandey A.,
    2. Shao H. N.,
    3. Marks R. M.,
    4. Polverini P. J.,
    5. Dixit V. M.
    (1995) Role of B61, the ligand for the eck receptor tyrosine kinase, in TNF-alpha-induced angiogenesis. Science 268, 567–569
    OpenUrlAbstract/FREE Full Text
    1. Park S.,
    2. Frisen J.,
    3. Barbacid M.
    (1997) Aberrant axonal projections in mice lacking EphA8 (Eek) tyrosine kinase receptors. EMBO J 16, 3106–3114
    OpenUrlCrossRefPubMedWeb of Science
    1. Peles E.,
    2. Nativ M.,
    3. Lustig M.,
    4. Grumet M.,
    5. Schilling J.,
    6. Martinez R.,
    7. Plowman G. D.,
    8. Schlessinger J.
    (1997) Identification of a novelcontactin-associated transmembrane receptor with multiple domains implicated in protein-protein interactions. EMBO J 16, 978–988
    OpenUrlAbstract
    1. Rodriguez I.,
    2. Feinstein P.,
    3. Mombaerts P.
    (1999) Variable patterns of axonal projections of sensory neurons in the mouse vomeronasal system. Cell 97, 199–208
    OpenUrlCrossRefPubMedWeb of Science
    1. Ryba N. J.,
    2. Tirindelli R.
    (1997) A new multigene family of putative pheromone receptors. Neuron 19, 371–379
    OpenUrlCrossRefPubMedWeb of Science
    1. Schaeren-Wiemers N.,
    2. Gerfin-Moser A.
    (1993) A single protocol to detect transcripts of various types and expression levels in neural tissue and cultured cells: in situ hybridization using digoxigenin-labelled cRNA probes. Histochemistry 100, 431–440
    OpenUrlCrossRefPubMedWeb of Science
    1. Sobieszczuk D. F.,
    2. Wilkinson D. G.
    (1999) Masking of Eph receptors and ephrins. Curr. Biol 9, 469–.
    OpenUrl
    1. St John J. A.,
    2. Tisay K. T.,
    3. Caras I. W.,
    4. Key B.
    (2000) Expression of EphA5 during development of the olfactory nerve pathway in rat. J. Comp. Neurol 416, 540–550
    OpenUrlCrossRefPubMedWeb of Science
    1. Stein E.,
    2. Lane A. A.,
    3. Cerretti D. P.,
    4. Schoecklmann H. O.,
    5. Schroff A. D.,
    6. Van Etten R. L.,
    7. Daniel T. O.
    (1998) Eph receptors discriminate specific ligand oligomers to determine alternative signaling complexes, attachment, and assembly responses. Genes Dev 12, 667–678
    OpenUrlAbstract/FREE Full Text
    1. Tessier-Lavigne M.,
    2. Goodman C. S.
    (1996) The molecular biology of axon guidance. Science 274, 1123–1133
    OpenUrlAbstract/FREE Full Text
    1. Vielmetter J.,
    2. Stolze B.,
    3. Bonhoeffer F.,
    4. Stuermer C. A.
    (1990) In vitro assay to test differential substrate affinities of growing axons and migratory cells. Exp. Brain Res 81, 283–287
    OpenUrlCrossRefPubMedWeb of Science
    1. von Campenhausen H.,
    2. Mori K.
    (2000) Convergence of segregated pheromonal pathways from the accessory olfactory bulb to the cortex in the mouse. Eur. J. Neurosci 12, 33–46
    OpenUrlCrossRefPubMedWeb of Science
    1. von Campenhausen H.,
    2. Yoshihara Y.,
    3. Mori K.
    (1997) O-CAM reveals segregated mitral/tufted cell pathways in developing accessory olfactory bulb. NeuroReport 8, 2607–2612
    OpenUrlPubMedWeb of Science
    1. Walter J.,
    2. Kern-Veits B.,
    3. Huf J.,
    4. Stolze B.,
    5. Bonhoeffer F.
    (1987) Recognition of position-specific properties of tectal cell membranes by retinal axons in vitro. Development 101, 685–696
    OpenUrlAbstract/FREE Full Text
    1. Wang F.,
    2. Nemes A.,
    3. Mendelsohn M.,
    4. Axel R.
    (1998) Odorant receptors govern the formation of a precise topographic map. Cell 93, 47–60
    OpenUrlCrossRefPubMedWeb of Science
    1. Wilkinson D. G.
    (2000) Eph receptors and ephrins: regulators of guidance and assembly. Int. Rev. Cytol 196, 177–244
    OpenUrlCrossRefPubMedWeb of Science
    1. Xu Q.,
    2. Mellitzer G.,
    3. Robinson V.,
    4. Wilkinson D. G.
    (1999) In vivo cell sorting in complementary segmental domains mediated by Eph receptors and ephrins. Nature 399, 267–271
    OpenUrlCrossRefPubMedWeb of Science
    1. Zhang J.-H.,
    2. Cerretti D. P.,
    3. Yu T.,
    4. Flanagan J. G.,
    5. Zhou R.
    (1996) Detection of ligands in regions anatomically connected to neurons expressing the Eph receptor Bsk: potential roles in neuron-target interaction. J. Neurosci 16, 7182–7192
    OpenUrlAbstract/FREE Full Text
    1. Zhou R. P.
    (1998) The Eph family receptors and ligands. Pharm. Ther 77, 151–181
    OpenUrl
Previous ArticleNext Article
Back to top
Previous ArticleNext Article

This Issue

 Download PDF

Email

Thank you for your interest in spreading the word on Development.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
A role for the EphA family in the topographic targeting of vomeronasal axons
(Your Name) has sent you a message from Development
(Your Name) thought you would like to see the Development web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
JOURNAL ARTICLES
A role for the EphA family in the topographic targeting of vomeronasal axons
B. Knoll, K. Zarbalis, W. Wurst, U. Drescher
Development 2001 128: 895-906;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Citation Tools
JOURNAL ARTICLES
A role for the EphA family in the topographic targeting of vomeronasal axons
B. Knoll, K. Zarbalis, W. Wurst, U. Drescher
Development 2001 128: 895-906;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Alerts

Please log in to add an alert for this article.

Sign in to email alerts with your email address

Article navigation

  • Top
  • Article
  • Info & metrics
  • PDF

Related articles

Cited by...

More in this TOC section

  • Groucho augments the repression of multiple Even skipped target genes in establishing parasegment boundaries
  • Axial skeletal patterning in mice lacking all paralogous group 8 Hox genes
  • Morphogenetic cell movements in the middle region of the dermomyotome dorsomedial lip associated with patterning and growth of the primary epaxial myotome
Show more JOURNAL ARTICLES

Similar articles

Other journals from The Company of Biologists

Journal of Cell Science

Journal of Experimental Biology

Disease Models & Mechanisms

Biology Open

Advertisement

An interview with Swathi Arur

Swathi Arur joined the team at Development as an Academic Editor in 2020. Her lab uses multidisciplinary approaches to understand female germline development and fertility. We met with her over Zoom to hear more about her life, her career and her love for C. elegans.


Jim Wells and Hanna Mikkola join our team of Editors

We are pleased to welcome James (Jim) Wells and Hanna Mikkola to our team of Editors. Jim joins us a new Academic Editor, taking over from Gordan Keller, and Hanna joins our team of Associate Editors. Find out more about their research interests and areas of expertise.


New funding scheme supports sustainable events

As part of our Sustainable Conferencing Initiative, we are pleased to announce funding for organisers that seek to reduce the environmental footprint of their event. The next deadline to apply for a Scientific Meeting grant is 26 March 2021.


Read & Publish participation continues to grow

“I’d heard of Read & Publish deals and knew that many universities, including mine, had signed up to them but I had not previously understood the benefits that these deals bring to authors who work at those universities.”

Professor Sally Lowell (University of Edinburgh) shares her experience of publishing Open Access as part of our growing Read & Publish initiative. We now have over 150 institutions in 15 countries and four library consortia taking part – find out more and view our full list of participating institutions.


Upcoming special issues

Imaging Development, Stem Cells and Regeneration
Submission deadline: 30 March 2021
Publication: mid-2021

The Immune System in Development and Regeneration
Guest editors: Florent Ginhoux and Paul Martin
Submission deadline: 1 September 2021
Publication: Spring 2022

Both special issues welcome Review articles as well as Research articles, and will be widely promoted online and at key global conferences.


Development presents...

Our successful webinar series continues into 2021, with early-career researchers presenting their papers and a chance to virtually network with the developmental biology community afterwards. Here, Brandon Carpenter talks about how inherited histone methylation defines the germline versus soma decision in C. elegans. 

Sign up to join our next session:

10 March
Time: TBC
Chaired by: Thomas Lecuit

Articles

  • Accepted manuscripts
  • Issue in progress
  • Latest complete issue
  • Issue archive
  • Archive by article type
  • Special issues
  • Subject collections
  • Sign up for alerts

About us

  • About Development
  • About the Node
  • Editors and board
  • Editor biographies
  • Travelling Fellowships
  • Grants and funding
  • Journal Meetings
  • Workshops
  • The Company of Biologists

For authors

  • Submit a manuscript
  • Aims and scope
  • Presubmission enquiries
  • Article types
  • Manuscript preparation
  • Cover suggestions
  • Editorial process
  • Promoting your paper
  • Open Access
  • Biology Open transfer

Journal info

  • Journal policies
  • Rights and permissions
  • Media policies
  • Reviewer guide
  • Sign up for alerts

Contact

  • Contact Development
  • Subscriptions
  • Advertising
  • Feedback
  • Institutional usage stats (logged-in users only)

 Twitter   YouTube   LinkedIn

© 2021   The Company of Biologists Ltd   Registered Charity 277992