Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Sign up for alerts
  • About us
    • About Development
    • About the Node
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contacts
    • Subscriptions
    • Feedback
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

User menu

  • Log in
  • Log out

Search

  • Advanced search
Development
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

supporting biologistsinspiring biology

Development

  • Log in
Advanced search

RSS  Twitter  Facebook  YouTube 

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Sign up for alerts
  • About us
    • About Development
    • About the Node
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contacts
    • Subscriptions
    • Feedback
JOURNAL ARTICLES
Embryonic retinoic acid synthesis is essential for heart morphogenesis in the mouse
K. Niederreither, J. Vermot, N. Messaddeq, B. Schuhbaur, P. Chambon, P. Dolle
Development 2001 128: 1019-1031;
K. Niederreither
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J. Vermot
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
N. Messaddeq
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
B. Schuhbaur
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
P. Chambon
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
P. Dolle
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & metrics
  • PDF
Loading

Summary

Retinoic acid (RA), the active derivative of vitamin A, has been implicated in various steps of cardiovascular development, but its contribution to early heart morphogenesis has not been clearly established in a mammalian system. To block endogenous RA synthesis, we have disrupted the gene encoding RALDH2, the first retinaldehyde dehydrogenase whose expression has been detected during early mouse post-implantation development. We describe here the heart abnormalities of the RA-deficient Raldh2 mutants that die in utero at gestational day 10.5. The embryonic heart tube forms properly, but fails to undergo rightward looping and, instead, forms a medial distended cavity. Expression of early heart determination factors is not altered in mutants, and the defect in heart looping does not appear to involve the Nodal/Lefty/Pitx2 pathway. Histological and molecular analysis reveal distinct anteroposterior components in the mutant heart tube, although posterior chamber (atria and sinus venosus) development is severely impaired. Instead of forming trabeculae, the developing ventricular myocardium consists of a thick layer of loosely attached cells. Ultrastructural analysis shows that most of the ventricular wall consists of prematurely differentiated cardiomyocytes, whereas undifferentiated cells remain clustered rostrally. We conclude that embryonic RA synthesis is required for realization of heart looping, development of posterior chambers and proper differentiation of ventricular cardiomyocytes. Nevertheless, the precise location of this synthesis may not be crucial, as these defects can mostly be rescued by systemic (maternal) RA administration. However, cardiac neural crest cells cannot be properly rescued in Raldh2(−/−)embryos, leading to outflow tract septation defects.

Reference

    1. Barak Y.,
    2. Nelson M. C.,
    3. Ong E. S.,
    4. Jones Y. Z.,
    5. Ruiz-Lozano P.,
    6. Chien K. R.,
    7. Koder A.,
    8. Evans R. M.
    (1999) PPARis required for placental, cardiac, and adipose tissue development. Mol. Cell 4, 585–595
    OpenUrl
    1. Berggren K.,
    2. McCaffery P.,
    3. Dräger U.,
    4. Forehand C. J.
    (1999) Differential distribution of retinoic acid synthesis in the chicken embryo as determined by immunolocalization of the retinoic acid synthetic enzyme, RALDH-2. Dev. Biol 210, 288–304
    OpenUrlCrossRefPubMedWeb of Science
    1. Biben C.,
    2. Harvey R.
    (1997) Homeodomain factor NKx2-5 controls left/right asymmetric expression of the bHLH gene eHand during murine heart development. Genes Dev 11, 1357–1369
    OpenUrlAbstract/FREE Full Text
    1. Bruneau B. G.,
    2. Logan M.,
    3. Davis N.,
    4. Levi T.,
    5. Tabin C. J.,
    6. Seidman J. G.,
    7. Seidman C. E.
    (1999) Chamber-specific cardiac expression of Tbx5 and heart defects in Holt-Oram syndrome. Dev. Biol 211, 100–108
    OpenUrlCrossRefPubMedWeb of Science
    1. Campione M.,
    2. Steinbeisser H.,
    3. Schweickert A.,
    4. Deissler K.,
    5. van Bebber F.,
    6. Lowe L. A.,
    7. Nowotschin S.,
    8. Viebahn C.,
    9. Haffter P.,
    10. Kuehn M. R.,
    11. Blum M.
    (1999) The homeobox gene Pitx2: mediator of asymmetric left-right signaling in vertebrate heart and gut looping. Development 126, 1225–1234
    OpenUrlAbstract
    1. Capdevila J.,
    2. Vogan K. J.,
    3. Tabin C. J.,
    4. Izpisua-Belmonte J. C.
    (2000) Mechanisms of left-right determination in vertebrates. Cell 101, 9–21
    OpenUrlCrossRefPubMedWeb of Science
    1. Chazaud C.,
    2. Chambon P.,
    3. Dolle P.
    (1999) Retinoic acid is required in the mouse embryo for left-right asymmetry determination and heart morphogenesis. Development 126, 2589–2596
    OpenUrlAbstract
    1. Chen J.,
    2. Kubalak S. W.,
    3. Chien K. R.
    (1998) Ventricular muscle-restricted targeting of the RXRalpha gene reveals a non-cell-autonomous requireent in cardiac chamber morphogenesis. Development 125, 1943–1949
    OpenUrlAbstract
    1. Christoffels V. M.,
    2. Habets P. E. M. H.,
    3. Franco D.,
    4. Campione M.,
    5. de Jong F.,
    6. Lamers W. H.,
    7. Bao Z. Z.,
    8. Palmer S.,
    9. Biben C.,
    10. Harvey R. P.,
    11. Moorman A. F. M.
    (2000) Chamber formation and morphogenesis in the developing mammalian heart. Dev. Biol 223, 266–278
    OpenUrlCrossRefPubMedWeb of Science
    1. Christoffels V. M.,
    2. Keijser A. G. M.,
    3. Houweling A. C.,
    4. Clout D. E. W.,
    5. Moorman A. F. M.
    (2000) Patterning the embryonic heart: identification of five mouse Iroquois homeobox genes in the developing heart. Dev. Biol 224, 263–274
    OpenUrlCrossRefPubMedWeb of Science
    1. Collignon J.,
    2. Varlet I.,
    3. Robertson E. J.
    (1996) Relationship between asymmetric nodal expression and the direction of embryonic turning. Nature 381, 155–158
    OpenUrlCrossRefPubMedWeb of Science
    1. Dersch H.,
    2. Zile M. H.
    (1993) Induction of normal cardiovascular development in the vitamin A-deprived quail embryo by natural retinoids. Dev. Biol 160, 424–433
    OpenUrlCrossRefPubMedWeb of Science
    1. Dickman E. D.,
    2. Smith S. M.
    (1996) Selective regulation of cardiomyocyte gene expression and cardiac morphogenesis by retinoic acid. Dev. Dyn 206, 39–48
    OpenUrlCrossRefPubMedWeb of Science
    1. Drysdale T. A.,
    2. Patterson K. D.,
    3. Saha M.,
    4. Krieg P. A.
    (1997) Retinoic acid can block differentiation of the myocardium after heart specification. Dev. Biol 188, 205–215
    OpenUrlCrossRefPubMedWeb of Science
    1. Duester G.
    (2000) Families of retinoid dehydrogenases regulating vitamin A function: production of visual pigment and retinoic acid. Eur. J. Biochem 267, 4315–4324
    OpenUrlCrossRefPubMedWeb of Science
    1. Echelard Y.,
    2. Vassileva G.,
    3. McMahon A. P.
    (1994) Cis-acting regulatory sequences governing Wnt-1 expression in the developing mouse CNS. Development 120, 2213–2224
    OpenUrlAbstract
    1. Epstein J. A.,
    2. Li J.,
    3. Lang D.,
    4. Chen F.,
    5. Brown C. B.,
    6. Jin F.,
    7. Lu M. M.,
    8. Thomas M.,
    9. Liu E. C. J.,
    10. Wessels A.,
    11. Lo C. W.
    (2000) Migration of cardiac neural crest cells in Splotch embryo. Development 127, 1869–1878
    OpenUrlAbstract
    1. Ghyselinck N. B.,
    2. Wendling O.,
    3. Wessaddeq N.,
    4. Dierich A.,
    5. Lampron C.,
    6. Decimo D.,
    7. Viville S.,
    8. Chambon P.,
    9. Mark M.
    (1998) Contribution of retinoic acid receptorisoforms to the formation of the conotruncal septum of the embryonic heart. Dev. Biol 198, 303–318
    OpenUrlPubMedWeb of Science
    1. Gruber P. J.,
    2. Kubalak S.,
    3. Pexieder T.,
    4. Sucov H.,
    5. Evans R.,
    6. Chien K.
    (1996) RXRdeficiency confers genetic susceptibility for aortic sac, atrioventricular cushion and ventricular defects in mice. J. Clin. Invest 98, 1332–1343
    OpenUrlCrossRefPubMedWeb of Science
    1. Heine U. I.,
    2. Roberts A. B.,
    3. Munoz E. F.,
    4. Roche N. S.,
    5. Sporn M. B.
    (1985) Effects of retinoid deficiency on the development of the heart and vascular system of the quail embryo. Virchows Arch. Cell Pathol 50, 135–152
    OpenUrlPubMedWeb of Science
    1. Jiang X.,
    2. Rowitch D. H.,
    3. Soriano P.,
    4. McMahon A. P.,
    5. Sucov H. M.
    (2000) Fate of the mammalian cardiac neural crest. Development 127, 1607–1616
    OpenUrlAbstract
    1. Kastner P.,
    2. Grondona J.,
    3. Mark M.,
    4. Gansmuller A.,
    5. LeMeur M.,
    6. Decimo D.,
    7. Vonesch J. L.,
    8. Dolle P.,
    9. Chambon P.
    (1994) Genetic analysis of RXRdevelopmental function: convergence of RXR and RAR signalling pathways in heart and eye morphogenesis. Cell 78, 987–1003
    OpenUrlCrossRefPubMedWeb of Science
    1. Kastner P.,
    2. Messaddeq N.,
    3. Mark M.,
    4. Wendling O.,
    5. Grondona J.M.,
    6. Ward S.,
    7. Ghyselinck N.,
    8. Chambon P.
    (1997) Vitamin A deficiency and mutations of RXR, RXR and RARlead to early differentiation of embryonic ventricular cardiomyocytes. Development 124, 4749–4758
    OpenUrlAbstract
    1. Klein E. S.,
    2. Wang J. W.,
    3. Khalifa B.,
    4. Gavignan S. A.,
    5. Chandraratna R. A. S.
    (2000) Recruitement of nuclear receptor corepressor and coactivator to the retinoic acid receptor by retinoid ligands. J. Biol. Chem 275, 19401–19408
    OpenUrlAbstract/FREE Full Text
    1. Kostetskii I.,
    2. Jiang Y.,
    3. Kostetskaia E.,
    4. Yuan S.,
    5. Evans T.,
    6. Zile M.
    (1999) Retinoid signaling required for normal heart development regulates GATA-4 in a pathway distinct from cardiomyocyte differentiation. Dev. Biol 206, 206–218
    OpenUrlCrossRefPubMedWeb of Science
    1. Kuo C. T.,
    2. Morrisey E. E.,
    3. Anandappa R.,
    4. Sigrist K.,
    5. Lu M. M.,
    6. Parmacek M. S.,
    7. Soudais C.,
    8. Leiden J. M.
    (1997) GATA4 transcription factor is required for ventral morphogenesis and heart tube formation. Genes Dev 11, 1048–1060
    OpenUrlAbstract/FREE Full Text
    1. Li H.,
    2. Wagner E.,
    3. McCaffery P.,
    4. Smith D.,
    5. Andreadis A.,
    6. Dräger U.
    (2000) A retinoic acid synthesizing enzyme in vental retina and telencephalon of the embryonic mouse. Mech. Dev 95, 283–289
    OpenUrlCrossRefPubMedWeb of Science
    1. Liberatore C. M.,
    2. Searcy-Schrick R. D.,
    3. Yutzey K. E.
    (2000) Ventricular expression of tbx5 inhibits normal heart chamber development. Dev. Biol 223, 169–180
    OpenUrlCrossRefPubMedWeb of Science
    1. Lin Q.,
    2. Schwarz J.,
    3. Bucana C.,
    4. Olson E. N.
    (1997) Control of mouse cardiac morphogenesis and myogenesis by transcription factor MEF2C. Science 276, 1404–1407
    OpenUrlAbstract/FREE Full Text
    1. Lin C. R.,
    2. Kioussi C.,
    3. O'Connell S.,
    4. Briata P.,
    5. Szeto D.,
    6. Liu F.,
    7. Izpisua-Belmonte J. C.,
    8. Rosenfeld M. G.
    (1999) Pitx2 regulates lung asymmetry, cardiac positioning and pituitary and tooth morphogenesis. Nature 401, 279–282
    OpenUrlCrossRefPubMedWeb of Science
    1. Linask K. K.,
    2. Lask J. W.
    (1988) A role for fibronectin in the migration of avian precardiac cells. I. Dose-dependent effects of fibronectin antibody. Dev. Biol 129, 315–323
    OpenUrlCrossRefPubMedWeb of Science
    1. Lyons I.,
    2. Parson L. M.,
    3. Hartley L.,
    4. Li R.,
    5. Andrews J. E.,
    6. Robb L.,
    7. Harvey R. P.
    (1995) Myogenic and morphogenetic defects in the heart tubes of murine embryos lacking the homeo box gene Nkx2-5. Genes Dev 9, 1654–1666
    OpenUrlAbstract/FREE Full Text
    1. Maconochie M.,
    2. Krishnamurthy R.,
    3. Nonchev S.,
    4. Meier P.,
    5. Manzanares M.,
    6. Mitchell P. J.,
    7. Krumlauf R.
    (1999) Regulation of Hoxa2 in cranial neural crest cells involves members of the AP-2 family. Development 126, 1483–1494
    OpenUrlAbstract
    1. Mark M.,
    2. Lufkin T.,
    3. Vonesch J. L.,
    4. Ruberte E.,
    5. Olivo J. C.,
    6. Dolle P.,
    7. Gorry P.,
    8. Lumsden A.,
    9. Chambon P.
    (1993) Two rhombomeres are altered in Hoxa-1 mutant mice. Development 119, 319–338
    OpenUrlAbstract
    1. Mascrez B.,
    2. Mark M.,
    3. Dierich A.,
    4. Ghyselinck N. B.,
    5. Kastner P.,
    6. Chambon P.
    (1998) The RXRoigand-dependent activation function (AF-2) is important for mouse development. Development 125, 4691–4707
    OpenUrlAbstract
    1. McCaffery P.,
    2. Dräger U.
    (2000) Regulation of retinoic acid signaling in the embryonic nervous system: a master differentiation factor. Cytokine Growth Factor Rev 11, 233–249
    OpenUrlCrossRefPubMedWeb of Science
    1. Means A. L.,
    2. Guda L. J.
    (1995) The roles of retinoids in vertebrate development. Annu. Rev. Biochem 64, 201–233
    OpenUrlCrossRefPubMedWeb of Science
    1. Mendelsohn C.,
    2. Lohnes D.,
    3. Decimo D.,
    4. Lufkin T.,
    5. LeMeur M.,
    6. Chambon P.,
    7. Mark M.
    (1994) Function of the retinoic acid receptors (RARs) during development. II. Multiple abnormalities at various stages of organogenesis in RAR double mutants. Development 120, 2749–2771
    OpenUrlAbstract
    1. Molkentin J. D.,
    2. Lin Q.,
    3. Duncan S. A.,
    4. Olson E. N.
    (1997) Requirement of the transcription factor GATA4 for heat tube formation and ventral morphogenesis. Genes Dev 11, 1061–1072
    OpenUrlAbstract/FREE Full Text
    1. Moss J. B.,
    2. Xavier-Neto J.,
    3. Shapiro M. D.,
    4. Nayeem S. M.,
    5. McCaffery P.,
    6. Dräger U. C.,
    7. Rosenthal N.
    (1998) Dynamic patterns of retinoic acid synthesis and response in the developing mammalian heart. Dev. Biol 199, 55–71
    OpenUrlCrossRefPubMedWeb of Science
    1. Niederreither K.,
    2. McCaffery P.,
    3. Dräger U. C.,
    4. Chambon P.,
    5. Dolle P.
    (1997) Restricted expression and retinoic acid-induced downregulation of the retinaldehyde dehydrogenase type 2 (RALDH-2) gene during mouse development. Mech. Dev 62, 67–78
    OpenUrlCrossRefPubMedWeb of Science
    1. Niederreither K.,
    2. Subbarayan V.,
    3. Dolle P.,
    4. Chambon P.
    (1999) Embryonic retinoic acid synthesis is essential for early mouse post-implantation development. Nat. Genet 21, 444–448
    OpenUrlCrossRefPubMedWeb of Science
    1. Niederreither K.,
    2. Vermot J.,
    3. Schuhbaur B.,
    4. Chambon P.,
    5. Dolle P.
    (2000) Retinoic acid synthesis and hindbrain patterning in the mouse embryo. Development 127, 75–85
    OpenUrlAbstract
    1. Osmond M. K.,
    2. Butler A. J.,
    3. Voon F. C. T.,
    4. Bellairs R.
    (1991) The effects of retinoic acid on heart formation in the early chick embryo. Development 113, 1405–1417
    OpenUrlAbstract
    1. Oulad-Abdelghani M.,
    2. Chazaud C.,
    3. Bouillet P.,
    4. Mattei M. G.,
    5. Dolle P.,
    6. Chambon P.
    (1998) Stra3/lefty, a retinoic acid-inducible novel member of the transforming growth factor-beta superfamily. Int. J. Dev. Biol 42, 23–32
    OpenUrlPubMedWeb of Science
    1. Rossant J.,
    2. Zirnbigl R.,
    3. Cado D.,
    4. Shago M.,
    5. Giguere V.
    (1991) Expression of a retinoic acid response element- hsplacZ transgene defines specific domains of transcriptional activity during mouse embryogenesis. Genes Dev 5, 1333–1344
    OpenUrlAbstract/FREE Full Text
    1. Sapin V.,
    2. Dolle P.,
    3. Hindelang C.,
    4. Kastner P.,
    5. Chambon P.
    (1997) Defects of the choriallantoic placenta in mouse RXRnull fetuses. Dev. Biol 191, 29–41
    OpenUrlCrossRefPubMedWeb of Science
    1. Sapin V.,
    2. Ward S. J.,
    3. Bronner S.,
    4. Chambon P.,
    5. Dolle P.
    (1997) Differential expression of transcripts encoding retinoid binding proteins and retinoic acid receptors during placentation of the mouse. Dev. Dyn 208, 199–210
    OpenUrlCrossRefPubMedWeb of Science
    1. Sucov H. M.,
    2. Dyson E.,
    3. Gumeringer C. L.,
    4. Price J.,
    5. Chien K. R.,
    6. Evans R. M.
    (1994) RXRmutant mice establish a genetic basisforvitamin A signaling in heart morphogenesis. Genes Dev 8, 1007–1018
    OpenUrlAbstract/FREE Full Text
    1. Tsukui T.,
    2. Capdevila J.,
    3. Tamura K.,
    4. Ruiz-Lozano P.,
    5. Rodriguez-Esteban C.,
    6. Yonei-Tamura S.,
    7. Magallon J.,
    8. Chandraratna R. A.,
    9. Chien K.,
    10. Blumberg B.,
    11. Evans R. M.,
    12. Izpisua-Belmonte J. C.
    (1999) Multiple left-right asymmetry defects in the Shh/ mutant mice unveil a convergence of the shh and retinoic acid pathways in the control of Lefty-1. Proc. Natl. Acad. Sci. USA 96, 11376–11381
    OpenUrlAbstract/FREE Full Text
    1. Ulven S. M.,
    2. Gundersen T. E.,
    3. Weedon M. S.,
    4. Landaas V. O.,
    5. Sakhi A. K.,
    6. Fromm S. H.,
    7. Geronimo B. A.,
    8. Moskaug J. O.,
    9. Blomhoff R.
    (2000) Identification of endogenous retinoids, enzymes, binding proteins, and receptors during early postimplantation development in mouse: important role of retinal dehydrogenase type 2 in synthesis of all-trans-retinoic acid. Dev. Biol 220, 379–391
    OpenUrlCrossRefPubMedWeb of Science
    1. Vermot J.,
    2. Fraulob V.,
    3. Dolle P.,
    4. Niederreither K.
    (2000) Expression of enzymes synthetizing (Aldh1 and Raldh2) and metabolizing (CYP26)retinoic acid in the mouse female reproductive system. Endocrinology 141, 3638–3645
    OpenUrlCrossRefPubMedWeb of Science
    1. Wasiak S.,
    2. Lohnes D.
    (1999) Retinoic acid affects left-right patterning. Dev. Biol 215, 332–342
    OpenUrlCrossRefPubMed
    1. Wendling O.,
    2. Chambon P.,
    3. Mark M.
    (1999) Retinoid X receptors are essential for early mouse development and placentogenesis. Proc. Natl. Acad. Sci. USA 96, 547–551
    OpenUrlAbstract/FREE Full Text
    1. Wilson J. G.,
    2. Warkany J.
    (1949) Aortic arch and cardiac anomalies in the offspring of vitamin A deficient rats. Am. J. Anat 85, 113–155
    OpenUrlCrossRefPubMedWeb of Science
    1. Xavier-Neto J.,
    2. Neville C. M.,
    3. Shapiro M. D.,
    4. Houghton L.,
    5. Wang G. F.,
    6. Nikovits W., Jr,
    7. Stockdale F. E.,
    8. Rosenthal N.
    (1999) A retinoic acid-inducible transgenic marker of sino-atrial development in the mouse heart. Development 126, 2677–2687
    OpenUrlAbstract
    1. Yutzey K. E.,
    2. Rhee J. T.,
    3. Bader D.
    (1994) Expression of the atrial-specific myosin heavy chain AMHC1 and the establishment ofanteroposterior polarity in the developing chicken heart. Development 120, 871–883
    OpenUrlAbstract
    1. Zhao D.,
    2. McCaffery P.,
    3. Ivins K. J.,
    4. Neve R. L.,
    5. Hogan P.,
    6. Chin W. W.,
    7. Dräger U. C.
    (1996) Molecular identification of a major retinoic acid-synthesizing enzyme, a retinaldehyde dehydrogenase. Eur. J. Biochem 15, 15–22
    OpenUrl
    1. Zheng W. L.,
    2. Sierra-Rivera E.,
    3. Luan J.,
    4. Osteen K. G.,
    5. Ong D. E.
    (1999) Retinoic acid synthesis and expression of cellular retinol-binding protein and cellular retinoic acid-binding protein type II are concurrent with decidualization of rat uterine stromal cells. Endocrinology 141, 802–808
    OpenUrlCrossRefPubMedWeb of Science
    1. Zile M. H.,
    2. Kostetskii I.,
    3. Yuan S.,
    4. Kostetskaia E.,
    5. St. Amand T. R.,
    6. Chen Y. P.,
    7. Jiang W.
    (2000) Retinoid signaling is required to complete the vertebrate cardiac left/right aymmetry pathway. Dev. Biol 223, 323–338
    OpenUrlCrossRefPubMedWeb of Science
Previous ArticleNext Article
Back to top
Previous ArticleNext Article

This Issue

 Download PDF

Email

Thank you for your interest in spreading the word on Development.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Embryonic retinoic acid synthesis is essential for heart morphogenesis in the mouse
(Your Name) has sent you a message from Development
(Your Name) thought you would like to see the Development web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
JOURNAL ARTICLES
Embryonic retinoic acid synthesis is essential for heart morphogenesis in the mouse
K. Niederreither, J. Vermot, N. Messaddeq, B. Schuhbaur, P. Chambon, P. Dolle
Development 2001 128: 1019-1031;
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Citation Tools
JOURNAL ARTICLES
Embryonic retinoic acid synthesis is essential for heart morphogenesis in the mouse
K. Niederreither, J. Vermot, N. Messaddeq, B. Schuhbaur, P. Chambon, P. Dolle
Development 2001 128: 1019-1031;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Alerts

Please log in to add an alert for this article.

Sign in to email alerts with your email address

Article navigation

  • Top
  • Article
  • Info & metrics
  • PDF

Related articles

Cited by...

More in this TOC section

  • Morphogenetic cell movements in the middle region of the dermomyotome dorsomedial lip associated with patterning and growth of the primary epaxial myotome
  • Germline and developmental roles of the nuclear transport factor importin (α)3 in C. elegans
  • Monofocal origin of telencephalic oligodendrocytes in the anterior entopeduncular area of the chick embryo
Show more JOURNAL ARTICLES

Similar articles

Other journals from The Company of Biologists

Journal of Cell Science

Journal of Experimental Biology

Disease Models & Mechanisms

Biology Open

Advertisement

Kathryn Virginia Anderson (1952-2020)

Developmental geneticist Kathryn Anderson passed away at home on 30 November 2020. Tamara Caspary, a former postdoc and friend, remembers Kathryn and her remarkable contribution to developmental biology.


Zooming into 2021

In a new Editorial, Editor-in-Chief James Briscoe and Executive Editor Katherine Brown reflect on the triumphs and tribulations of the last 12 months, and look towards a hopefully calmer and more predictable year.


Read & Publish participation extends worldwide

Over 60 institutions in 12 countries are now participating in our Read & Publish initiative. Here, James Briscoe explains what this means for his institution, The Francis Crick Institute. Find out more and view our full list of participating institutions.


Upcoming special issues

Imaging Development, Stem Cells and Regeneration
Submission deadline: 30 March 2021
Publication: mid-2021

The Immune System in Development and Regeneration
Guest editors: Florent Ginhoux and Paul Martin
Submission deadline: 1 September 2021
Publication: Spring 2022

Both special issues welcome Review articles as well as Research articles, and will be widely promoted online and at key global conferences.


Development presents...

Our successful webinar series continues into 2021, with early-career researchers presenting their papers and a chance to virtually network with the developmental biology community afterwards. Sign up to join our next session:

10 February
Time: 13:00 (GMT)
Chaired by: preLights

Articles

  • Accepted manuscripts
  • Issue in progress
  • Latest complete issue
  • Issue archive
  • Archive by article type
  • Special issues
  • Subject collections
  • Sign up for alerts

About us

  • About Development
  • About the Node
  • Editors and board
  • Editor biographies
  • Travelling Fellowships
  • Grants and funding
  • Journal Meetings
  • Workshops
  • The Company of Biologists

For authors

  • Submit a manuscript
  • Aims and scope
  • Presubmission enquiries
  • Article types
  • Manuscript preparation
  • Cover suggestions
  • Editorial process
  • Promoting your paper
  • Open Access
  • Biology Open transfer

Journal info

  • Journal policies
  • Rights and permissions
  • Media policies
  • Reviewer guide
  • Sign up for alerts

Contact

  • Contact Development
  • Subscriptions
  • Advertising
  • Feedback

 Twitter   YouTube   LinkedIn

© 2021   The Company of Biologists Ltd   Registered Charity 277992