Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Sign up for alerts
  • About us
    • About Development
    • About the Node
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contacts
    • Subscriptions
    • Feedback
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

User menu

  • Log in

Search

  • Advanced search
Development
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

supporting biologistsinspiring biology

Development

  • Log in
Advanced search

RSS  Twitter  Facebook  YouTube 

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Sign up for alerts
  • About us
    • About Development
    • About the Node
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contacts
    • Subscriptions
    • Feedback
TECHNIQUES AND RESOURCES
ClearT: a detergent- and solvent-free clearing method for neuronal and non-neuronal tissue
Takaaki Kuwajima, Austen A. Sitko, Punita Bhansali, Chris Jurgens, William Guido, Carol Mason
Development 2013 140: 1364-1368; doi: 10.1242/dev.091844
Takaaki Kuwajima
1 Department of Pathology and Cell Biology, Columbia University, College of Physicians and Surgeons, 630 West 168th Street, 14-509 P&S, New York, NY 10032, USA.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Austen A. Sitko
2 Department of Neuroscience, Columbia University, College of Physicians and Surgeons, 1051 Riverside Drive, New York, NY 10032, USA.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Punita Bhansali
1 Department of Pathology and Cell Biology, Columbia University, College of Physicians and Surgeons, 630 West 168th Street, 14-509 P&S, New York, NY 10032, USA.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Chris Jurgens
3 Department of Anatomy and Neurobiology,Virginia Commonwealth University, Richmond, VA 23298, USA.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
William Guido
3 Department of Anatomy and Neurobiology,Virginia Commonwealth University, Richmond, VA 23298, USA.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Carol Mason
1 Department of Pathology and Cell Biology, Columbia University, College of Physicians and Surgeons, 630 West 168th Street, 14-509 P&S, New York, NY 10032, USA.
2 Department of Neuroscience, Columbia University, College of Physicians and Surgeons, 1051 Riverside Drive, New York, NY 10032, USA.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: cam4@columbia.edu
  • Article
  • Figures & tables
  • Supp info
  • Info & metrics
  • PDF + SI
  • PDF
Loading

Article Figures & Tables

Figures

  • Fig. 1.
    • Download figure
    • Open in new tab
    • Download powerpoint
    Fig. 1.

    Rapid tissue clearing with ClearT. (A) Fixed whole embryos (E14.5) and dissected postnatal brains (P0) were cleared overnight. The grid is visible through tissue cleared by ClearT. (B) E14.5 embryos cleared with ClearT or ScaleA2 reach full transparency in 1 day or 14 days, respectively. (C) ClearT does not lead to volume changes. P0 sections (800 μm), surface area measured: pre-cleared, red line; ClearT, blue line. (D) Clearing is reversible with PBS (30 minutes). Scale bars: 1 mm.

  • Table 1.
  • Fig. 2.
    • Download figure
    • Open in new tab
    • Download powerpoint
    Fig. 2.

    Retinal axon projections in brain tissue cleared with ClearT. (A) E15.5 eye was labeled with DiI, the jaw and tongue were cut away and the head was cleared with ClearT. DiI-labeled contralateral (C) and ipsilateral (I) retinal axons and optic chiasm are detected in both dorsal and ventral views after clearing with ClearT. (B) Merged stack (41 images, 5 μm steps) of E14.5 DiI-labeled growth cones (GCs) (arrows) and axons (arrowheads) of the ipsilateral optic tract; imaged from the ventral surface of 200 μm brain section, before and after clearing. (C) DiI-labeled contralateral RGC projection to the thalamus and superior colliculus at E18.5. Brains were cut sagittally at the midline and cleared with ClearT. Merged stack (51 images, 20 μm steps), viewed from the midline. DiI-labeled RGC axons in the dLGN in the thalamus (TH) and superior colliculus (SC) were undetectable in pre-cleared tissue, but easily visible after clearing. (D) CTB conjugated to Alexa Fluor 488 or 594 was injected into each eye and a 700 μm frontal section of P5 brain was cleared with ClearT. Optical slices at 250 μm, 450 μm and 600 μm below the tissue section surface are shown (from 71 images, 10 μm steps). Both CTB labels were observable, though deeper, in cleared dLGN compared with the same tissue before clearing. Scale bars: 1 mm in C (top); 100 μm in A and bottom of C,D (bottom); 10 μm in B.

  • Fig. 3.
    • Download figure
    • Open in new tab
    • Download powerpoint
    Fig. 3.

    ClearT2 clears tissue with fluorescent proteins or immunohistochemistry. (A) ClearT cleared E14.5 actin-GFP embryos, but reduced GFP fluorescence. Formamide (50%) maintained fluorescence, but failed to clear embryos. ClearT2 cleared embryos and maintained fluorescence. (B) P0 sections (800 μm) were transparent after ClearT2, with no volume change. (C) P11 Thy1-GFP (M-line) hippocampus section (800 μm), before and after clearing with ClearT2; 38 images, 20 μm steps (top and middle). GFP+ pyramidal neurons (arrows) and dendrites (arrowheads) in CA1 region are markedly more visible after clearing; 52 images, 2.5 μm steps (bottom). GCL, granule cell layer; ML, molecular layer. (D) Sections of E14.5 optic chiasm (200 μm), immunolabeled with the radial glial marker RC2, cleared with ClearT2; 51 images, 3 μm steps; three optical slices shown. RC2+ staining was observed deeper in cleared compared with pre-cleared tissue. Blue indicates Hoechst staining. (E) E11.5 whole embryos, immunolabeled with neurofilament antibody (NF) and treated with ClearT2. NF+ axons were much more visible in cleared embryos (top); magnification of trigeminal axons reaching epithelial targets (bottom). (F) Section (300 μm) of postnatal mouse brain, dLGN anterogradely labeled with CTB conjugated to Alexa Fluor 594. A single neuron was filled with biocytin and immunostained with streptavidin-Alexa Fluor 647. Clearing with ClearT2 enhanced resolution and visibility of the dendritic arbor of the neuron. Merged stack, 55 images, 2 μm steps. CTB label is in red; biocytin-filled neuron is pseudo-colored green. Scale bars: 1 mm in A,B,E; 40 μm in C; 20 μm in D,F.

Previous ArticleNext Article
Back to top
Previous ArticleNext Article

This Issue

Keywords

  • Clearing reagent
  • Whole mount
  • Retinal axon pathway
  • Immunohistochemistry
  • Fluorescent protein
  • DiI

 Download PDF

Email

Thank you for your interest in spreading the word on Development.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
ClearT: a detergent- and solvent-free clearing method for neuronal and non-neuronal tissue
(Your Name) has sent you a message from Development
(Your Name) thought you would like to see the Development web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
TECHNIQUES AND RESOURCES
ClearT: a detergent- and solvent-free clearing method for neuronal and non-neuronal tissue
Takaaki Kuwajima, Austen A. Sitko, Punita Bhansali, Chris Jurgens, William Guido, Carol Mason
Development 2013 140: 1364-1368; doi: 10.1242/dev.091844
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Citation Tools
TECHNIQUES AND RESOURCES
ClearT: a detergent- and solvent-free clearing method for neuronal and non-neuronal tissue
Takaaki Kuwajima, Austen A. Sitko, Punita Bhansali, Chris Jurgens, William Guido, Carol Mason
Development 2013 140: 1364-1368; doi: 10.1242/dev.091844

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Alerts

Please log in to add an alert for this article.

Sign in to email alerts with your email address

Article navigation

  • Top
  • Article
    • Summary
    • INTRODUCTION
    • MATERIALS AND METHODS
    • RESULTS AND DISCUSSION
    • Acknowledgments
    • Footnotes
    • References
  • Figures & tables
  • Supp info
  • Info & metrics
  • PDF + SI
  • PDF

Related articles

Cited by...

More in this TOC section

  • Widespread labeling and genomic editing of the fetal central nervous system by in utero CRISPR AAV9-PHP.eB administration
  • A developmental stage-specific network approach for studying dynamic co-regulation of transcription factors and microRNAs during craniofacial development
  • EPySeg: a coding-free solution for automated segmentation of epithelia using deep learning
Show more TECHNIQUES AND RESOURCES

Similar articles

Other journals from The Company of Biologists

Journal of Cell Science

Journal of Experimental Biology

Disease Models & Mechanisms

Biology Open

Advertisement

Kathryn Virginia Anderson (1952-2020)

Developmental geneticist Kathryn Anderson passed away at home on 30 November 2020. Tamara Caspary, a former postdoc and friend, remembers Kathryn and her remarkable contribution to developmental biology.


Zooming into 2021

In a new Editorial, Editor-in-Chief James Briscoe and Executive Editor Katherine Brown reflect on the triumphs and tribulations of the last 12 months, and look towards a hopefully calmer and more predictable year.


Read & Publish participation extends worldwide

Over 60 institutions in 12 countries are now participating in our Read & Publish initiative. Here, James Briscoe explains what this means for his institution, The Francis Crick Institute. Find out more and view our full list of participating institutions.


Upcoming special issues

Imaging Development, Stem Cells and Regeneration
Submission deadline: 30 March 2021
Publication: mid-2021

The Immune System in Development and Regeneration
Guest editors: Florent Ginhoux and Paul Martin
Submission deadline: 1 September 2021
Publication: Spring 2022

Both special issues welcome Review articles as well as Research articles, and will be widely promoted online and at key global conferences.


Development presents...

Our successful webinar series continues into 2021, with early-career researchers presenting their papers and a chance to virtually network with the developmental biology community afterwards. Sign up to join our next session:

10 February
Time: 13:00 (GMT)
Chaired by: preLights

Articles

  • Accepted manuscripts
  • Issue in progress
  • Latest complete issue
  • Issue archive
  • Archive by article type
  • Special issues
  • Subject collections
  • Sign up for alerts

About us

  • About Development
  • About the Node
  • Editors and board
  • Editor biographies
  • Travelling Fellowships
  • Grants and funding
  • Journal Meetings
  • Workshops
  • The Company of Biologists

For authors

  • Submit a manuscript
  • Aims and scope
  • Presubmission enquiries
  • Article types
  • Manuscript preparation
  • Cover suggestions
  • Editorial process
  • Promoting your paper
  • Open Access
  • Biology Open transfer

Journal info

  • Journal policies
  • Rights and permissions
  • Media policies
  • Reviewer guide
  • Sign up for alerts

Contact

  • Contact Development
  • Subscriptions
  • Advertising
  • Feedback

 Twitter   YouTube   LinkedIn

© 2021   The Company of Biologists Ltd   Registered Charity 277992