Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Sign up for alerts
  • About us
    • About Development
    • About the Node
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contacts
    • Subscriptions
    • Advertising
    • Feedback
    • For library administrators
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

User menu

  • Log in
  • Log out

Search

  • Advanced search
Development
  • COB
    • About The Company of Biologists
    • Development
    • Journal of Cell Science
    • Journal of Experimental Biology
    • Disease Models & Mechanisms
    • Biology Open

supporting biologistsinspiring biology

Development

  • Log in
Advanced search

RSS  Twitter  Facebook  YouTube 

  • Home
  • Articles
    • Accepted manuscripts
    • Issue in progress
    • Latest complete issue
    • Issue archive
    • Archive by article type
    • Special issues
    • Subject collections
    • Sign up for alerts
  • About us
    • About Development
    • About the Node
    • Editors and Board
    • Editor biographies
    • Travelling Fellowships
    • Grants and funding
    • Journal Meetings
    • Workshops
    • The Company of Biologists
    • Journal news
  • For authors
    • Submit a manuscript
    • Aims and scope
    • Presubmission enquiries
    • Article types
    • Manuscript preparation
    • Cover suggestions
    • Editorial process
    • Promoting your paper
    • Open Access
    • Biology Open transfer
  • Journal info
    • Journal policies
    • Rights and permissions
    • Media policies
    • Reviewer guide
    • Sign up for alerts
  • Contacts
    • Contacts
    • Subscriptions
    • Advertising
    • Feedback
    • For library administrators
PRIMER
GATA transcription factors in development and disease
Mathieu Tremblay, Oraly Sanchez-Ferras, Maxime Bouchard
Development 2018 145: dev164384 doi: 10.1242/dev.164384 Published 22 October 2018
Mathieu Tremblay
Goodman Cancer Research Centre and Department of Biochemistry, McGill University, Montreal H3A 1A3, Canada
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Oraly Sanchez-Ferras
Goodman Cancer Research Centre and Department of Biochemistry, McGill University, Montreal H3A 1A3, Canada
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Maxime Bouchard
Goodman Cancer Research Centre and Department of Biochemistry, McGill University, Montreal H3A 1A3, Canada
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Maxime Bouchard
  • For correspondence: maxime.bouchard@mcgill.ca
  • Article
  • Figures & tables
  • Info & metrics
  • PDF
Loading

ABSTRACT

The GATA family of transcription factors is of crucial importance during embryonic development, playing complex and widespread roles in cell fate decisions and tissue morphogenesis. GATA proteins are essential for the development of tissues derived from all three germ layers, including the skin, brain, gonads, liver, hematopoietic, cardiovascular and urogenital systems. The crucial activity of GATA factors is underscored by the fact that inactivating mutations in most GATA members lead to embryonic lethality in mouse models and are often associated with developmental diseases in humans. In this Primer, we discuss the unique and redundant functions of GATA proteins in tissue morphogenesis, with an emphasis on their regulation of lineage specification and early organogenesis.

Introduction

During vertebrate development, the GATA family of transcription factors plays pleiotropic roles in the early stages of cell differentiation and organ development across a variety of tissues. Decades of research in mouse genetics and biochemistry have revealed the crucial importance of GATA factors in tissue homeostasis and morphogenesis, and more specifically as regulators of progenitor differentiation and lineage specification. In addition, the identification of causal mutations in GATA factors has shed light on a number of human developmental disorders, such as anemia, hypoparathyroidism, deafness and infertility, as well as renal and cardiac defects.

GATA transcription factors are evolutionarily conserved among animals, plants and fungi. Vertebrates possess six paralogs, classified into two subfamilies based on their spatial and temporal expression patterns (Fig. 1A). Although originally divided as hematopoietic (GATA1/2/3) and cardiac (GATA4/5/6) GATA factors, their function and expression patterns extend well beyond these tissues. For example, GATA2 and GATA3 also have important functions in the kidney, skin, prostate, mammary gland and central nervous system (Grote et al., 2008; Kaufman et al., 2003; Kouros-Mehr et al., 2006; Lee et al., 1991; Nardelli et al., 1999). Similarly, GATA4/5/6 are crucially required in organ systems such as the lung, liver and pancreas (Molkentin, 2000). Thus, GATA factors perform key functions in a wide range of developing systems (Table 1), and understanding how each member acts in a cell-type or tissue-specific manner is crucial in understanding their role in embryonic development and their contribution to pathogenesis. Here, we briefly discuss the molecular hallmarks and mode of action of GATA proteins, review the different developmental systems in which GATA members have been implicated and link these findings to human disease.

Fig. 1.
  • Download figure
  • Open in new tab
  • Download powerpoint
Fig. 1.

The GATA family of proteins. (A) The six murine members of the GATA family of transcription factors are grouped as GATA1/2/3 and GATA4/5/6 based on expression and similarity. They contain two highly conserved zinc-finger domains (Zn), a nuclear localization signal (NLS) and the less conserved C-terminal and N-terminal regions, the latter of which contains transcriptional activation domains (AD). The percentage similarity of the murine protein sequence is given with reference to GATA3, as calculated using MatGAT (Matrix Global Alignment Tool). (B) Neighbor-joining tree analysis of the percentage identity (PID) between different mammalian GATA family members using Clustal and Jalview software. Analysis was performed using protein sequences from mouse, human, dog, cow, armadillo, capuchin and opossum.

View this table:
  • View inline
  • View popup
  • Download powerpoint
Table 1.

GATA transcription factors function in organogenesis and their link with human diseases

The GATA family proteins: molecular mechanisms

GATA factors were named after the consensus DNA-binding sequence (A/T)GATA(A/G), which is recognized by the zinc-finger domains common to all family members. Of the two zinc fingers (Fig. 1A), one appears to be consistently required for consensus sequence recognition and binding (Yang and Evans, 1992). The other zinc finger either binds the GATA recognition sequence, stabilizes the interaction with certain sequences or interacts with protein partners (Bates et al., 2008; Crispino et al., 2001; Martin and Orkin, 1990; Trainor et al., 2000; Tsang et al., 1997; Wilkinson-White et al., 2015). In contrast to the highly conserved zinc-finger region, the N- and C- terminal regions, which contain transcription activation modules, diverge considerably among GATA factors (Fig. 1A) (Morrisey et al., 1997). Protein sequence conservation between all six vertebrate members identifies GATA3 as having the highest sequence similarity with both its GATA paralogs and orthologs, suggesting that it may be closest to the ancestral mammalian GATA factor (Fig. 1A,B).

GATA proteins can act as pioneer factors

The classical function of transcription factors is to bind specific DNA sequences in enhancer and promoter regions and modulate their transcriptional output. However, a subclass of transcription factors called ‘pioneer transcription factors’ has the capacity to recognize and bind heterochromatic DNA sequences, and to promote chromatin opening and the recruitment of additional transcriptional regulators. In recent years, a number of examples of pioneer activity have been reported for GATA transcription factors.

Acting as a priming factor, GATA4 binds closed chromatin prior to hepatocyte specification and promotes liver-specific gene expression (Bossard and Zaret, 1998; Cirillo et al., 2002). In support of this pioneer activity, GATA4, together with another pioneer factor, FOXA3, can reprogram fibroblasts toward the hepatocyte lineage (Huang et al., 2011). Pioneer activity is also observed in epithelial tissues, where GATA proteins promote the transcription and downstream activity of multiple steroid receptor genes. In the mammary gland, GATA3 and the estrogen receptor (ERα) regulate each other and, along with FOXA1, can nucleate a remodeling complex at heterochromatic enhancer regions of ERα target genes, leading to the opening and epigenetic marking of sites for active transcription (Eeckhoute et al., 2007; Kong et al., 2011). Alone, FOXA1 or ERα are not sufficient to fully open the chromatin, supporting a bona fide pioneer activity for GATA3 (Eeckhoute et al., 2007; Kong et al., 2011). Similarly, in the prostate, GATA2 enters in a mutual regulatory loop with the androgen receptor (AR) and favors chromatin opening of AR target genes in conjunction with FOXA1 (Böhm et al., 2009; He et al., 2014; Wang et al., 2007; Wu et al., 2014; Xiao et al., 2016). GATA2 also regulates progesterone receptor (Pgr) gene expression in the uterus, and acts as a co-factor of PGR to activate its target genes (Jeong et al., 2005; Magklara and Smith, 2009; Rubel et al., 2012, 2016; Zhang et al., 2013). The integrated activity of GATA factors with steroid hormone receptors is intriguing and may reflect an ancestral role of GATA factors in hormonal responses. Together, these findings highlight that, through their pioneer activity (Fig. 2), GATA proteins act as primary regulators of lineage decisions and cell fate transitions.

Fig. 2.
  • Download figure
  • Open in new tab
  • Download powerpoint
Fig. 2.

GATA transcription factor modes of action. (A) GATA proteins can act as pioneer factors by initiating local chromatin opening and allowing the recruitment of other transcription factors (TFs) to regulatory elements. (B) They also participate in chromatin looping, which brings together distant regulatory elements. (C) The sequential expression and displacement of one GATA factor by another on a target gene (the GATA switch) often includes the negative regulation of expression of one another. (D) GATA factors can also synergize with a co-activator (CoA) to induce gene activation through recruitment of a histone methyl transferase (HMT) and/or histone acetyl transferase (HAT). (E) Conversely, the association of GATA factors with a co-repressor (CoR), which can recruit histone demethylase (HDM) and/or histone deacetylase (HDAC), negatively regulates gene expression. (F) Finally, GATA factors can antagonize the function of one another by competing for a mutual co-factor (CoF).

GATA transcriptional complexes

The pioneer activity of GATA factors and their subsequent role as classical transcriptional regulators are achieved largely via their interaction with co-regulators to assemble a transcriptional complex and recruit chromatin remodeling proteins (Katsumoto et al., 2004; Lowry and Mackay, 2006; Takemoto et al., 2002; Zhou and Ouyang, 2003). GATA factors typically regulate gene expression in a combinatorial way, acting together with other tissue-specific transcription factors (Fig. 2). During hematopoietic stem cell differentiation, they can form transcriptional complexes with FOG1/2 (friend of GATA), LMO1/2, SCL (TAL1), E-proteins (E2A, HEB, E2-2), LYL1 and LDB1/2 to perform elaborate regulatory activity (Krivega et al., 2014; Love et al., 2014; Meier et al., 2006; Tripic et al., 2009; Wadman et al., 1997; Wilson et al., 2010). A similar complex involving GATA2, LMO4, SCL and NLI exists in the embryonic central nervous system (CNS) and controls the binary cell fate choice between GABAergic (V2b) and glutamatergic (V2a) interneuron development (Joshi et al., 2009). Other molecular interactions between GATA factors and ETO2, RUNX1, ERG or FLI-1 have also been described (Goardon et al., 2006; Meier et al., 2006; Schuh et al., 2005; Tripic et al., 2009; Wilson et al., 2010).

These multiprotein complexes can function both as activators or repressors of target genes (Wadman et al., 1997). Within the GATA complexes, FOG1/2 proteins are key to recruiting epigenetic regulators, including CtBP and NuRD, to induce locus-wide histone demethylation and deacetylation, respectively (Fox et al., 1999; Hong et al., 2005; Rodriguez et al., 2005). The histone acetyl transferase p300 also acts as a positive mediator of different GATA-dependent transcriptional programs in several systems, and is modulated by the polycomb complex (PRC) (Blobel et al., 1998; Dai and Markham, 2001; Flodby et al., 2017; He et al., 2012; Hosokawa et al., 2013a; Kakita et al., 1999; Lamonica et al., 2011; Wada et al., 2000; Yamashita et al., 2002). Additional post-translational modifications, such as phosphorylation and SUMOylation, fine-tune GATA protein activity (Chun et al., 2003; Collavin et al., 2004; Partington and Patient, 1999; Towatari et al., 1995).

As part of their function in transcriptional regulation, GATA factors can contribute to 3-dimensional chromatin reorganization. Together with FOG, LDB1, MED1 and BRG1, GATA factors can promote chromatin looping by bringing together distant enhancers and promoter elements (Fig. 2) (Kim et al., 2009; Song et al., 2007; Stumpf et al., 2006). A direct role in bridging distant regulatory elements has been demonstrated for GATA1 at the β-globin locus, for GATA2 at the Kit1 locus and for GATA3 at Th2 cytokine loci (Jing et al., 2008; Spilianakis and Flavell, 2004; Vakoc et al., 2005). Overall, the great variety of GATA-interacting protein partners is indicative of highly regulated and context-specific functions.

The GATA switch

The differential recruitment of GATA factors and their respective regulatory complexes can also be achieved by changes in their expression pattern. They can influence each other's expression such that they function consecutively during lineage commitment. This sequential activity of GATA factors on their target genes is referred to as the ‘GATA switch’ (Fig. 2). This switch happens for multiple shared target genes leading to distinct transcriptional outputs (Bresnick et al., 2010; Huang et al., 2016; Im et al., 2005). For example, the displacement of GATA2 by GATA1 upon erythroid differentiation is tightly coupled to the repression of Gata2 transcription through recruitment of EKLF and the SWI/SNF chromatin remodeling complex. This causes removal of the histone acetylase CBP and a change in chromatin looping conformation (Grass et al., 2006; Martowicz et al., 2005). The switch from GATA2 to GATA1 also affects the chromatin landscape of differentiating erythrocytes through a shift in histone methyltransferase EZH2 to EZH1 (Xu et al., 2015). A similar switch has been identified in the placenta between GATA3 and GATA2, where the Gata2 locus is repressed by GATA3 in progenitors, and is expressed only as differentiation occurs (Ray et al., 2009). A GATA switch also occurs at the Wdr77 locus during both erythroid maturation and lung development, leading to proliferation inhibition and terminal differentiation in both cell types (Yu et al., 2016).

Together, the identification of GATA co-factors and their associated complexes reveals a sophisticated transcriptional activity for GATA factors that extends from pioneer factors to fine transcriptional activators and repressors, depending on the associated molecular complexes (Fig. 2). The transcriptional response elicited by GATA proteins is intimately associated with cellular context and leads to a specific molecular output for each tissue.

GATA factors in differentiation and organogenesis

The crucial role of GATA factors as transcriptional regulators was first identified in hematopoietic and cardiac development. Since then, germline and conditional gene inactivation models in mice have been used as powerful tools to decipher the diverse functions of GATA factors in a variety of developmental systems. This effort has led to a better understanding of the activity of GATA proteins in embryo patterning and organogenesis and, later, was informative for understanding human disorders through the identification of disease-causing mutations in GATA genes (Table 1). The following sections detail the developmental systems in which GATA factors play a prominent role, beginning with the hematopoietic and cardiac systems –two systems in which GATA factors have been most extensively studied – and then briefly discussing other tissues.

The hematopoietic system

As previously alluded to, the first and best-documented role for GATA transcription factors is in hematopoietic system development, which is initiated in the embryo but persists during postnatal and adult stages. Blood cell differentiation is divided into primitive and definitive hematopoiesis (Ivanovs et al., 2017). Primitive hematopoiesis takes place in the embryonic yolk sac from embryonic day (E) 7.25 to E9.0 and produces only erythrocytes and macrophages. In contrast, definitive hematopoiesis, which progresses from the aorta-gonad-mesonephros (AGM) region to the fetal liver between E10.5 and E12.5, and to the bone marrow and spleen around birth, is dependent on the hierarchical differentiation of multipotent hematopoietic stem cells (HSCs). The differentiation of HSCs generates lineage-committed progenitor cells that give rise to all blood cell lineages. These progenitors differentiate into either myeloid cells (monocytes, macrophages, granulocytes, erythrocytes, megakaryocytes/platelets and dendritic cells) or lymphoid lineages (T cells, B cells, NK cells and innate lymphoid cells). A number of studies have revealed that this occurs via the widespread activity of GATA1/2/3 (Fig. 3).

Fig. 3.
  • Download figure
  • Open in new tab
  • Download powerpoint
Fig. 3.

GATA factors in hematopoietic development. In the hematopoietic system, GATA1/2/3 act at different stages of the cellular hierarchy to specify cell fates. They direct lineage choices via a cross-antagonism with other GATA factors and with other lineage-specific transcription factors. CLP, common lymphoid progenitor; CMP, common myeloid progenitor; GMP, granulocyte/monocyte progenitor; HSC, hematopoietic stem cell; ILC, innate lymphoid cell; MEP, megakaryocyte-erythrocyte progenitor; NK, natural killer; Th, T helper cell; Treg, regulatory T cell.

In the mouse, GATA1 and GATA2 regulate both primitive and definitive erythropoiesis. Accordingly, knockouts for either gene die around E10-E11 from severe hematopoietic defects (Fujiwara et al., 1996; Ling et al., 2004; Pevny et al., 1995; Tsai et al., 1994; Tsai and Orkin, 1997). During primitive hematopoiesis, Gata1 and Gata2 act redundantly and only double-knockout embryos show a complete block in erythropoiesis (Fujiwara et al., 2004). Upon activation of definitive hematopoiesis, GATA1 and GATA2 are primarily required for stem/progenitor cell maintenance and act as commitment factors for the different lineages (Fig. 3). The crucial importance of Gata2 in stem/progenitor cells was shown by gain- and loss-of-function experiments, which both result in a reduction in HSC numbers and a block of their differentiation (Heyworth et al., 1999; Persons et al., 1999; Tipping et al., 2009; Tsai and Orkin, 1997). Gata3 also plays a role in the long-term self-renewal of HSCs through the control of cell cycle entry (Frelin et al., 2013; Ku et al., 2012).

At later stages of hematopoietic development, as lineage specification proceeds from progenitor cells, Gata1 acts as a primary regulator of erythropoietic cell differentiation (Weiss and Orkin, 1995). This discovery, made in the mouse, was later supported by the presence of inactivating GATA1 mutations in dyserythropoietic anemia in humans (Nichols et al., 2000). The mutually antagonistic function between GATA1 and the transcription factor PU.1 forms one of the earliest binary lineage decisions, specifying HSCs into erythro-megakaryocytic or myelo-lymphoid lineages, respectively (Hoppe et al., 2016; Laiosa et al., 2006). At the molecular level, PU.1 displaces GATA1 from DNA, promoting myeloid differentiation, whereas GATA1 inhibits the interaction between PU.1 and its co-activator JUN (Zhang et al., 2000), thereby allowing erythroid cell specification. A role for Gata1 was additionally found in the differentiation of megakaryocytes, eosinophils and mast cells (Gutierrez et al., 2007; Harigae et al., 1998; Hirasawa et al., 2002; Shivdasani et al., 1997; Vyas et al., 1999), as well as in dendritic cell differentiation, survival and function, where it acts primarily at the lineage bifurcation point between monocytes and dendritic cells (Gutierrez et al., 2007).

GATA2 similarly acts at multiple decision points during myeloid lineage differentiation. GATA2 is necessary for the differentiation of myeloid cells, such as dendritic cells, from a common myeloid progenitor (CMP) and prevents the aberrant expression of a T-cell-associated gene signature (Onodera et al., 2016). During mast cell specification from granulocyte-monocyte progenitors (GMPs), GATA2 must replace GATA1 at key loci to promote lineage commitment (Cantor et al., 2008). Another example of a GATA-regulated lineage decision is found in megakaryocyte-erythrocyte progenitors (MEPs), in which GATA2 promotes megakaryocyte differentiation at the expense of the erythrocyte lineage (Ikonomi et al., 2000) (Fig. 3). In support of a crucial activity in myeloid cell differentiation, GATA2 mutations have been identified in patients with immunodeficiency 21 (IMD21) (Ostergaard et al., 2011) and in lymphedema with myelodysplasia (Hsu et al., 2011).

Hence, together GATA1 and GATA2 activate the transcriptional program of specific cell fates, while repressing regulators of alternative cell fates in the myeloid and erythroid lineages. Interestingly, a similar lineage decision event occurs between the myeloid and lymphoid lineages, where the balance is controlled through mutual repression between the lymphoid regulator GATA3 and the myeloid regulator GATA2 (Nandakumar et al., 2015) (Fig. 3). Following this lymphoid lineage decision, GATA3 is crucially required both for T-cell lineage specification and survival (Pai et al., 2003), and to antagonize B-cell and myeloid developmental fate, which is performed partly by repression of PU.1 (Scripture-Adams et al., 2014). Down the T-cell differentiation path, GATA3 informs the choice between helper and cytotoxic lineages. In the absence of Gata3, specification to the T helper lineage is impaired, whereas overexpression of GATA3 inhibits cytotoxic T cell differentiation (Hernández-Hoyos et al., 2003; Pai et al., 2003). GATA3 is next required for the decision between Th1 and Th2 lineages through a cross-antagonizing mechanism between GATA3 and the transcription factor T-BET (TBX21) (Ouyang et al., 1998; Zhu et al., 2004). This lineage specification event involves a GATA3/CHD4/p300 activation complex at Th2-specific gene loci and a GATA3/CHD4/NURD repression complex at T-bet and Th1-specific gene loci (Hosokawa et al., 2016, 2013b). By repressing the alternative cell fate, GATA3 acts as a master regulator of Th2 differentiation, while T-BET promotes the Th1 lineage (Zhu et al., 2004).

The innate counterparts of cytotoxic T cells are the natural killer (NK) cells. Although Gata3 is dispensable for early development of NK cells, it is required for thymic NK cell maturation (Vosshenrich et al., 2006). Gata3 deletion in NK cells affects both maturation and homing to peripheral organs (Ali et al., 2016). Hence, GATA3 is a crucial regulator of both adaptive and innate lymphoid cells, and exerts its influence by controlling the development and function of T cells, B cells and thymic NK cells.

Overall, the exhaustive analysis of GATA factor activity in the hematopoietic system has been instrumental in understanding the concept of binary lineage decisions, both at the cellular and molecular levels. As we discuss below, binary lineage decisions extend beyond the hematopoietic system and, accordingly, numerous roles for GATA factors in the development of other organs/tissues have been reported.

The cardiovascular system

Heart development begins with the fusion of the cardiac crescent, which generates the heart tube. Through a looping process, the heart tube forms the different cardiac chambers and arterial trunk (Fig. 4A). The formation of the heart requires the coordination of several processes, including cell specification, cell differentiation and tissue patterning. This leads to tissue compartmentalization and commitment of the cardiovascular progenitors to different cell lineages: cardiomyocytes, endocardial, smooth muscle and epicardial cells (Lescroart et al., 2018).

Fig. 4.
  • Download figure
  • Open in new tab
  • Download powerpoint
Fig. 4.

Specific and redundant roles of GATA factors during heart morphogenesis. (A) Schematic representation of heart development in the mouse. (B-G) The impact of Gata3, Gata4, Gata5 and Gata6 inactivation on heart development. (B) Gata4-deficient hearts present an early lethality due to a failure in heart looping. (C) Both germline and conditional Gata5 inactivation (using Tie2Cre) lead to aortic valve abnormalities. (D) Conditional inactivation of Gata6 in neural crest-derived vascular smooth muscle cells (using Wnt1Cre) prevents cardiac neural crest cell colonization and leads to aortic and ventricular septal defects. (E) Concomitant loss of both Gata4 and Gata6 (via tetraploid embryo complementation) leads to acardia. (F) Compound heterozygous mice for Gata5 and either Gata4 or Gata6 exhibit multiple heart defects, leading to death. (G) Gata3 germline knockout embryos rescued for noradrenaline deficiency show severe heart malformations, such as ventricular septal defects, double-outlet of right ventricle, anomalies of aortic arch and persistent truncus arteriosus. A, atrium; IT, inflow tract; LA, left atrium; LV, left ventricle; NCC, neural crest cells; OT, outflow tract; RA, right atrium; RV, right ventricle; SV, sinus venosus; V, ventricular region.

GATA4/5/6 are central regulators of cardiac development (Clowes et al., 2014; Peterkin et al., 2005). Among them, GATA4 has the earliest unique function in the heart, as its inactivation in the mouse leads to embryonic lethality between E8.5 and E10.5 due to severe defects in ventral body patterning and a lack of pericardial cavity and heart tube (Kuo et al., 1997; Molkentin et al., 1997). Analysis of chimeric embryos in which the visceral endoderm was composed of wild-type cells revealed important activities for Gata4 in proepicardium development, heart tube looping, chamber formation and in the generation of the septum transversum mesenchyme (Pu et al., 2004; Watt et al., 2004; Zeisberg et al., 2005) (Fig. 4B). GATA4 has also been shown to regulate endocardial cushion formation by promoting epithelial-to-mesenchymal transition (EMT) (Rivera-Feliciano, 2006). As seen in other systems, the interaction of GATA factors with co-factors reinforces their activity and specificity. For example, GATA4 interacts with FOG2 to regulate heart muscle vasculature formation (Chlon and Crispino, 2012; Crispino et al., 2001; Tevosian et al., 2000) and further regulates myocardial gene expression by interacting with different transcription factors, such as retinoic acid receptors, NKX2.5 or NFATC4 and MEF2 (Clabby et al., 2003; Durocher et al., 1997; Molkentin et al., 1998; Morin et al., 2000; Sepulveda et al., 1998). The interaction of GATA4 with SMAD4 or HEY1/2 is also important for the positive and negative regulation of cardiac genes, respectively. In the atrioventricular (AV) canal (heart septum and valves), the recruitment of a GATA4/SMAD4/p300 transcriptional activation complex induces H3K27 acetylation and AV canal gene activation. By contrast, the recruitment of a GATA4/HEY1,HEY2/HDAC transcriptional repression complex induces H3K27 deacetylation and repression of AV canal genes in the chamber myocardium (Stefanovic et al., 2014). This precise balance of co-factor interactions is essential for the confinement of chamber genes and AV canal genes in their respective cardiac region.

GATA5, another member of the ‘cardiac’ group, is expressed in the myocardium as well as in the endocardium and derived endocardial cushions. Conditional inactivation of Gata5 in endocardial cells leads to hypoplastic hearts and partially penetrant bicuspid aortic valve formation (valves with two leaflets rather than three), suggesting an autonomous role for GATA5 in endocardial cushion formation and cardiac valve development (Laforest and Nemer, 2011) (Fig. 4C).

As Gata6-deficient embryos die at an early stage due to defects in extra-embryonic endoderm differentiation (Koutsourakis et al., 1999; Morrisey et al., 1998), conditional inactivation approaches have been necessary to decipher its role in heart morphogenesis. The specific inactivation of Gata6 in neural crest-derived vascular smooth muscle cells leads to perinatal lethality and cardiovascular defects, including interrupted aortic arch and persistent truncus arteriosus (Lepore et al., 2006) (Fig. 4D). This suggests that GATA6 contributes to the morphogenetic patterning of the aortic arch and cardiac outflow tracts by controlling the proper migration of cardiac neural crest cells to the developing cardiac outflow tract. On the other hand, GATA6 in cardiac progenitors is uniquely required for ventricular septal morphogenesis (Tian et al., 2010).

In addition to their specific roles, functional redundancy is a hallmark of GATA4/5/6 in heart development. GATA4 and GATA6 act redundantly in the regulation of cardiac lineage specification as the inactivation of both genes leads to a complete failure to initiate the cardiac morphogenetic program (Zhao et al., 2008) (Fig. 4E). In addition, genetic cooperativity between GATA4/5/6 has been demonstrated in compound heterozygote mice for Gata5 and either Gata4 or Gata6, which exhibit pronounced heart defects and lethality (Laforest and Nemer, 2011) (Fig. 4F). As expected for such crucial regulators of heart development, inactivating mutations in GATA4/5/6 have been identified in humans with congenital heart defects (Garg et al., 2003; Kassab et al., 2016; Kodo et al., 2009; Van Der Bom et al., 2011; Wang et al., 2014; Zhang et al., 2015).

Although GATA4/5/6 are recognized as the primary cardiac GATA factors, Gata3 is also expressed in various developing cardiac structures. GATA3 has a significant role in the formation of the cardiac outflow tract, as revealed by catecholamine-based rescue of Gata3 mutant lethality (Raid et al., 2009) (Fig. 4G). These defects include a shorter outflow tract and reduced rotation of truncus arteriosus during the looping stages. Interestingly, individuals with DiGeorge syndrome with a deletion in the 10p region that contains the GATA3 gene present with multiple problems, including cardiac defects (Epstein and Buck, 2000; Wilson et al., 1993).

Other mesoderm-derived tissues

The urogenital system

The urogenital system comprises the kidneys, gonads and urogenital tracts, which develop from the intermediate mesoderm (Stewart and Bouchard, 2014) (Fig. 5A). Both Gata2 and Gata3 are expressed in the developing urogenital system (Ainoya et al., 2012; Grote et al., 2006; Hasegawa et al., 2007). In the renal primordium, Gata3 is largely restricted to the epithelial nephric duct, whereas Gata2 is expressed in the intermediate mesoderm surrounding the duct. At a later stage, they are co-expressed in the developing collecting ducts of the kidney. In the mouse, germline inactivation of Gata3 leads to a complete absence of kidneys and urinary tracts due to severe defects in elongation and guidance of the nephric duct (Grote et al., 2008, 2006) (Fig. 5B). GATA3 occupies, together with the transcription factors PAX2 and LIM1, a strategic position at the base of the gene regulatory network driving kidney development (Boualia et al., 2013; Chia et al., 2011; Grote et al., 2008, 2006). GATA3 is later necessary for nephric duct insertion into the cloaca (primordium of the bladder and urethra), and for branching morphogenesis of the kidney, in part through the regulation of the receptor tyrosine kinase Ret (Chia et al., 2011; Grote et al., 2008, 2006) (Fig. 5C). GATA2 also plays a key role in renal development, as evidenced by studies using transgenic Gata2 expression to rescue Gata2-deficient embryos. These experiments identified a crucial requirement for GATA2 in regulating ureter positioning in the renal mesenchyme, likely acting through Bmp4 signaling (Ainoya et al., 2012; Zhou et al., 1998). Interestingly, both Gata2- and Gata3-related malformations seen in mice reproduce defects from individuals with congenital anomalies of the kidney and urinary tract (CAKUT) (Hoshino et al., 2008; Uetani and Bouchard, 2009; Yosypiv, 2012). In addition, inactivating GATA3 mutations in humans lead to renal defects as part of HDR (hypoparathyroidism, sensorineural deafness and renal disease) syndrome (Van Esch et al., 2000).

Fig. 5.
  • Download figure
  • Open in new tab
  • Download powerpoint
Fig. 5.

The role of Gata3 in kidney morphogenesis. (A) An overview of the stages of kidney development. The embryonic mesonephros develops through nephric duct (ND; green) elongation and fusion with the cloaca (red arrow). The cloaca is the primordium of the bladder and urethra. Budding of the ureter from the nephric duct into the surrounding mesenchyme initiates the formation of the definitive kidney (metanephros). (B) Loss of Gata3 leads to severe defects in kidney development resembling the disease group congenital anomalies of the kidneys and urinary tract (CAKUT). The complete lack of Gata3 from the germline leads to severe elongation defects, resulting in renal agenesis. (C). Conditional inactivation of Gata3 in the elongating ND using Hoxb7Cre leads to defects in ureter maturation and subsequent hydronephrosis due to a failure in ND-cloaca fusion (red arrow).

GATA4/5/6 contribute to other aspects of urogenital system development, acting mostly in the gonads and lower urinary tract. GATA4 is primarily associated with sex determination and gonadal development (Viger et al., 1998). The conditional deletion of Gata4 (using Wt1Cre) in the coelomic epithelium results in a complete absence of genital ridge formation and a failure to initiate testis and ovary development (Hu et al., 2013). Hence, GATA4 is an early and essential driver of gonad formation in both male and female embryos. Gene inactivation studies performed at a slightly later stage further determined that GATA4 and FOG2 collaborate to regulate the expression of male sex-determination genes such as Sry, which directs Sertoli cell formation and the male physiological program (Manuylov et al., 2011; Tevosian et al., 2002). In support of the importance of the GATA4-FOG2 interaction, the knock-in of a Val217Gly mutation in Gata4, which abrogates its interaction with FOG co-factors, results in severe anomalies of testis development and partial sex reversal (Bouma et al., 2007; Crispino et al., 2001; Tevosian et al., 2002). In line with this finding, a nearby inactivating mutation in GATA4 (Gly221Arg) has been identified in individuals with congenital testicular defects (Lourenco et al., 2011).

Interestingly, GATA4 and FOG2 have also been shown to contribute to female gonad development by repressing the WNT pathway inhibitor Dkk1 (Manuylov et al., 2008). In Fog2 or Gata4Val217Gly mutant embryos, ectopic Dkk1 expression affects WNT-β-catenin signaling, which is required for female gonad development (Manuylov et al., 2008). At a later stage of development, simultaneous loss of both Gata4 and Gata6 in the developing ovary leads to fertility problems that result from defects in folliculogenesis and in ovarian growth and function (Bennett et al., 2012; Efimenko et al., 2013; Kyrönlahti et al., 2011; Padua et al., 2014).

Although not strictly part of the urogenital system, the adrenal gland cortex arises from intermediate mesoderm progenitors adjacent to the genital ridge progenitor population, whereas the medulla region of the adrenal gland derives from the neural crest. The specific deletion of Gata6 in adrenocortical progenitors impairs adrenal development (Kiiveri et al., 2002; Pihlajoki et al., 2013). Strikingly, Gata6-deficient adrenal progenitor cells acquire features of the gonad differentiation program, supporting a close relationship between these two lineages (Pihlajoki et al., 2013). Although Gata4 alone is dispensable for adrenal gland development, the loss of both Gata4 and Gata6 leads to adrenal agenesis due to loss of expression of the master regulator Sf1. Together, these results emphasize once again the functional redundancy between GATA4 and GATA6, and their unique requirement at different stages of organ development (Tevosian et al., 2015).

The sexual dimorphic role observed for some GATA factors extends to Gata5, as the inactivation of this gene leads to urogenital tract abnormalities only in females (Molkentin et al., 2000). These include malformations in the urethra and vaginal opening, and are linked to a disruption of early morphogenetic movements. This phenotype mimics a condition of proximal hypospadias in women (Molkentin et al., 2000). Together, these results reveal a pleiotropic role for GATA4/5/6 during genital system development, ranging from early specification to terminal differentiation.

Endothelial vascular cells

The developmental functions of GATA factors also include a role in the vascular system. Loss of Gata2 specifically in the embryonic endothelium or in the lymphatic vasculature has revealed important function for GATA2 in both the morphogenesis and maintenance of lymphatic vessel valves and vasculature (Kazenwadel et al., 2015; Lim et al., 2012). This requirement is elicited by VEGF and involves the early activation of a lineage-specific program, including the regulation of Sox18, Etv2 and Tal1 (Kanki et al., 2017). In this respect, GATA2 respects the propensity of GATA factors to promote lineage specification and early stage morphogenesis. In line with this role for GATA2 in the lymphatic system, inactivating GATA2 mutations have been identified in individuals with Emberger syndrome, a disease characterized by lymphedema and a susceptibility to the development of myelodysplastic syndrome/acute myeloid leukemia (MDS/AML) (Ostergaard et al., 2011).

Mesenchymal cell differentiation

A requirement for GATA2 and GATA4 has also been reported in mesoderm-derived mesenchymal stem cells and their differentiation into adipocytes and osteoblasts. In this system, GATA2 primarily promotes mesenchymal stem cell proliferation and prevents premature differentiation to both adipocyte and osteoblast cell lineages, while GATA4 plays a positive role in osteoblast cell differentiation (Güemes et al., 2014; Li et al., 2016; Zhou et al., 2017; Kamata et al., 2014; Patankar et al., 2011; Tsai et al., 2005). Their function in these tissues is therefore compatible with the general observation that GATA proteins act as regulators of lineage specification and tissue homeostasis.

Ectoderm-derived tissues

Ectoderm-derived epithelial tissues such as the mammary gland and the skin exhibit a distinct stem cell hierarchy. In these tissues, GATA factors govern the differentiation programs driving lineage specification, but are also central to the maintenance of epithelial tissue architecture.

Mammary gland

In the mammary gland, Gata3 is expressed in the terminal end buds, which host the stem/progenitor cell pool during development (Kouros-Mehr et al., 2008). As the gland develops, GATA3 regulates duct elongation and branching morphogenesis, as well as normal differentiation of luminal epithelial cells (Kouros-Mehr et al., 2008, 2006). Post puberty, the absence of Gata3 causes lactation failure and pup lethality owing to a failure in cell differentiation, which results in an accumulation of progenitor cells in both the alveolar and ductal lineages (Asselin-Labat et al., 2007). In the duct, GATA3 acts as a pioneer factor with FOXA1 to open the chromatin at ER-responsive genes (Kong et al., 2011). A different situation is observed in the alveolar secretory epithelium, where GATA3 is also required for epithelial cell differentiation but acts independently of ERα and FOXA1, suggesting that it drives an independent transcriptional program in this lineage. Hence, GATA3 directs luminal differentiation of progenitor cells, while also being necessary for the maintenance of luminal epithelial cell integrity and function (Asselin-Labat et al., 2007; Kouros-Mehr et al., 2006).

The epidermis

GATA3 additionally plays unique roles in skin development. In this system, multipotent stem cells give rise to the epidermis and hair follicle lineages (Gonzales and Fuchs, 2017). Inactivation of Gata3 in basal cells leads to a loss of the epidermal barrier and causes postnatal death due to dehydration through the epidermis (de Guzman Strong et al., 2006). Gata3 deletion in the skin also causes an expansion of inner root sheath (IRS) progenitors that fail to differentiate and instead progress toward a hair shaft fate, creating an aberrant hair structure (Kaufman et al., 2003; Lim et al., 2000). The specific deletion of Gata3 in the epidermis and hair follicles causes a delay in hair growth and maintenance, abnormal hair follicle organization and defects in skin differentiation (de Guzman Strong et al., 2006; Kurek et al., 2007). At the molecular level, GATA3 integrates morphogenetic signals such as WNT, NOTCH and the BMP pathway at the crossroads of hair follicle versus epidermal fates and in IRS versus hair shaft cell fate decisions (Genander et al., 2014; Kaufman et al., 2003; Kurek et al., 2007). In the skin, GATA3 therefore controls several lineage decisions as well as terminal epithelial integrity (Chikh et al., 2007; Masse et al., 2014).

The inner ear and lens

Both the inner ear and lens develop from epithelial placodes undergoing invagination and subsequent differentiation. In the inner ear, Gata3 and Gata2 are expressed in a sequential manner, the former regulating the expression of the latter. In line with an early expression, Gata3 germline deficiency leads to aberrant otic placode invagination accompanied by otic epithelial closure and detachment defects, which affect the outgrowth of the semicircular and cochlear ducts (Karis et al., 2001; Lilleväli et al., 2006, 2004). These defects are associated with the reduced expression of genes involved in cell adhesion and motility (Lilleväli et al., 2006). As expected for a downstream regulator, loss of Gata2 in the otic region gives rise to a milder phenotype, causing growth defects in only the semicircular ducts (Haugas et al., 2010).

Following otic vesicle invagination and patterning, neuronal progenitor cells delaminate from the vesicle to form the vestibulo-acoustic ganglia, while the remaining cells form the neurosensory epithelia. In the absence of Gata3, prosensory cell formation is prevented, leading to defects in spiral ganglion neurons and cochlear neurosensory epithelia (Duncan et al., 2011; Haugas et al., 2012). The inactivation of Gata3 specifically in the neurosensory epithelial system of the cochlea leads to aberrant tectorial membrane and microvilli development. GATA3 therefore ensures both the specification and correct wiring of efferent inner ear neurons (Appler et al., 2013) through upregulation of pro-neurosensory and sensory epithelial gene networks (Lilleväli et al., 2006). Interestingly, mice heterozygous for Gata3 show progressive hearing loss resulting from hair cell degeneration (van der Wees et al., 2004). This phenotype parallels the systematic deafness observed in individuals with HDR syndrome, which results from inactivating mutations in GATA3 (Van Esch et al., 2000). Together, these findings highlight the importance of GATA3 in inner ear development and hearing/deafness.

In contrast to its role in the otic placode, GATA3 does not affect the invagination of lens placodes. However, it is essential for subsequent lens differentiation, as shown by the downregulation of γ-crystallin genes and failure to degrade fiber cell nuclei in Gata3-deficient embryos. GATA3 further controls cell cycle exit of lens progenitor cells through the upregulation of Cdkn1b (p27) and Cdkn1c (p57), and downregulation of Ccnd2 (cyclin D2) expression (Maeda et al., 2009). Together, these results identify GATA3 as an important regulator of lens cell fate progression.

Other ectoderm-derived tissues

In addition to the skin, lens, otic vesicle and mammary gland, GATA2 and GATA3 are required for progenitor cell maintenance and lineage specification in other ectoderm-derived tissues. For example, GATA2 and GATA3 perform important regulatory functions at different stages of neuronal development. In the hindbrain, GATA2 and GATA3 act redundantly during neuronal specification, but also play unique roles as selectors in subsequent stages of neuronal differentiation toward the serotonergic and glutamatergic lineages (Craven et al., 2004; Haugas et al., 2016; Lahti et al., 2016). A unique role for GATA2 has also been identified for the development of sympathetic (Tsarovina et al., 2004) and GABAergic neurons (Kala et al., 2009; Willett and Greene, 2011). In sympathetic neurons, GATA3 is essential for the expression of tyrosine hydroxylase (Th), a key enzyme of the catecholamine biosynthetic pathway (e.g. dopamine and noradrenalin). Accordingly, inactivation of Gata3 in the mouse germline causes noradrenaline deficiency and embryonic lethality around E10.5, which can be rescued to birth by the administration of downstream catecholamine intermediates (Lim et al., 2000).

In the pituitary gland, the interaction between GATA2 and PIT1 controls cell fate decisions. GATA2 acts synergistically with PIT1 to upregulate thyrotropic and repress gonadotropic genes, whereas the expression of GATA2 in the absence of PIT1 leads to the expression of gonadotrope-specific genes (Dasen et al., 1999). Here again, the combinatorial interaction of GATA factors with specific transcription factors is an important mechanism of action in the control of lineage specification.

Endoderm-derived tissues

During development, the endoderm compartment gives rise to the gastrointestinal tract and associated organs, and is divided into foregut, midgut and hindgut. The liver, lungs and pancreas all emerge from the foregut endoderm, whereas the small intestine develops from the midgut endoderm and the colon from the hindgut. The prostate gland is also endoderm derived, arising from the primitive urogenital sinus located at the junction between bladder and urethra. In recent years, roles for GATA factors in the development of multiple endoderm-derived organs have been described.

The liver

During liver development, GATA4 acts as a pioneer factor in hepatocyte cell differentiation by rendering chromatin accessible to other transcription factors while establishing liver-specific gene expression (Watt et al., 2007; Zheng et al., 2013). GATA4 additionally controls the specification and function of liver sinusoidal cells (fenestrated blood vessels). The specific deletion of Gata4 in these cells switches discontinuous liver sinusoids into continuous capillaries (Géraud et al., 2017), and mutant mice die from anemia due to liver hypoplasia, fibrosis and impaired colonization by hematopoietic progenitor cells. Thus, GATA4 is not only important as a master regulator of hepatocyte differentiation but also for hepatic microvascular endothelium specification. The analysis of Gata4 or Gata6 mutant embryos rescued for extra-embryonic defects with tetraploid embryonic stem cells (ESCs) additionally identified defects in liver bud growth and commitment of the endoderm to a hepatic cell fate (Watt et al., 2007; Zhao et al., 2005). GATA4 and GATA6 possibly compensate for each other during the specification stage, as the initial hepatic fate specification is not affected in single mutants. These results suggest crucial roles in different aspects of liver morphogenesis.

The lungs

In the lungs, GATA6 is essential for branching morphogenesis and late epithelial cell differentiation, but not for endodermal specification. This was demonstrated in chimeras derived from Gata6-deficient embryonic stem cells (ESCs), which show branching defects of the pulmonary endoderm as well as a block in bronchial epithelial cell differentiation (Koutsourakis et al., 2001). GATA6 controls the balance between bronchioalveolar stem cell expansion and epithelial differentiation (Zhang et al., 2008). In addition, GATA4 and FOG2 are required for normal lung development and diaphragm function, acting via the regulation of lung mesenchymal cells (Ackerman et al., 2007; Jay et al., 2007).

The pancreas

Although both Gata4 and Gata6 are expressed in pancreatic progenitors, their expression becomes mutually exclusive and restricted to endocrine and exocrine lineages, respectively (Decker et al., 2006). In mice, only the loss of both Gata4 and Gata6 leads to complete pancreas agenesis, which is indicative of functional redundancy between both genes at an early stage (Carrasco et al., 2012; Xuan et al., 2012). In the absence of both factors, the epithelium fails to expand properly and the specification of both endocrine and exocrine lineages is considerably affected. These defects partly result from an upregulation of the sonic hedgehog (SHH) pathway, which leads to the conversion of pancreatic progenitor cells toward the stomach or intestinal cell lineages (Xuan and Sussel, 2016). GATA4 and GATA6 are thus essential to maintain pancreas identity through suppression of the SHH pathway. Interestingly, in vitro differentiation assays using human pluripotent stem cells (hPSCs) have revealed that the formation of pancreatic progenitors is highly sensitive to GATA6 and GATA4 gene dosage (Shi et al., 2017). Whereas a reduced number of progenitors is seen in GATA4-deficient as well as in GATA4/6 compound heterozygote cells, pancreatic progenitor cells are absent in embryos derived from GATA6-deficient hPSCs. In accordance with this, mutations in both GATA4 and GATA6 have been linked to diabetes and pancreatic agenesis in humans (Allen et al., 2011; Chao et al., 2015; De Franco et al., 2013; Shaw-Smith et al., 2014; Stanescu et al., 2015). Individiuals with GATA6 mutations also present heart, gut, thyroid and intra-uterine growth retardation problems, highlighting the important role played by GATA6 in multiple tissues (Bonnefond et al., 2012; Chao et al., 2015; De Franco et al., 2013).

The intestine

Gata4 and Gata6 are expressed in different parts of the intestine. Whereas Gata6 is expressed in the distal part of the small intestine (the ileum) and in the colon, Gata4 is only expressed in the proximal duodenum and jejunum (Battle et al., 2008; Bosse et al., 2006; Fang et al., 2006). Loss of Gata4 in the jejunal epithelium leads to severe defects in fat and cholesterol absorption, resulting from a switch from jejunal to ileal gene expression profiles (Battle et al., 2008). Gata4 is co-expressed with Fog1 in a proximal-distal gradient along the small intestine (Beuling et al., 2008). With the help of a mouse model specifically preventing the interaction between GATA4 and FOG1, it was found that the GATA4:FOG1 complex is required to represses ileal fate specification in the proximal intestine, whereas GATA4 acts independently of FOG1 to activate proximal intestine-specific genes (Beuling et al., 2008). More recently, GATA4 was revealed as being sufficient to induce jujenal enterocyte identity when ectopically expressed in the ileum (Thompson et al., 2017), indicative of a strong jejunal lineage specification potential. Deletion of Gata6 in the small intestine alters ileal epithelial cell populations by reducing enteroendocrine and Paneth cell number and by increasing goblet cell number. It also causes changes in the ileal enterocyte-specific gene expression pattern, shifting it towards a colon-like pattern (Beuling et al., 2011). The absence of both Gata4 and Gata6 leads to a loss of enterocytes, an increase in goblet cell number and, ultimately, neonatal death (Walker et al., 2014). This phenotype is in part due to deregulation of the NOTCH pathway, which is important for the choice between enterocyte and goblet cell fate (Walker et al., 2014). More caudally, GATA6 is required for the expression of goblet cell and colonocyte-specific genes, as well as for the control of proliferation, migration and lineage maturation in the colon epithelium (Beuling et al., 2012). Hence, the intestine is another developmental system in which the GATA4-GATA6 pair plays an essential and redundant role in cell differentiation.

The prostate

The prostate epithelium architecture is analogous to the mammary epithelium and is mainly composed of luminal and basal cells, interspersed with rare neuroendocrine cells. As is the case for the mammary gland, GATA3 plays a key role in prostate development. However, in contrast to its luminal-restricted expression observed in the mammary gland, Gata3 is expressed in both basal and luminal lineages of the prostate (Shafer et al., 2017). Loss of Gata3 in the developing prostate (using Nkx3.1Cre) does not prevent luminal cell differentiation but causes an accumulation of intermediate progenitor cells associated with loss of polarity, tissue hyperplasia and defective branching morphogenesis (Fig. 6). These malformations stem from defects in lineage commitment through oriented cell division in progenitor cells (Shafer et al., 2017). In the adult prostate, Gata2 and Gata3 act redundantly, as only double knockouts (using PbCre) show altered expression of AR and an expansion of the basal cell compartment (Xiao et al., 2016). Interestingly, a negative-feedback regulatory loop exists between GATA2 and AR, whereby GATA2 directly controls Ar gene expression, while androgen signaling downregulates Gata2 expression (Xiao et al., 2016). Hence, GATA factors are essential for both the development and the maintenance of prostate epithelial homeostasis.

Fig. 6.
  • Download figure
  • Open in new tab
  • Download powerpoint
Fig. 6.

The role of Gata3 in early prostate development. (A) During prostate development, basal cells (orange) divide either symmetrically (parallel to the basement membrane), generating two basal daughter cells, or asymmetrically (perpendicular to the basement membrane), generating a basal and a luminal daughter (green). Some divisions (dashed arrows) generate intermediate luminal progenitors (purple). (B) Inactivation of Gata3 specifically in the developing prostate (using Nkx3.1Cre) randomizes spindle orientation, which favors intermediate progenitor formation and expansion of the luminal layer, resulting in hyperplasia of the prostate epithelium.

Pre-implantation embryo development

In addition to their roles in the various germ layer-derived tissues, GATA factors play important roles during pre-implantation development. In mouse blastocysts (E5.5), Gata2 and Gata3 are specifically expressed in the trophectoderm lineage, which gives rise to the placenta, but are not expressed in the inner cell mass from which the embryo proper develops (Home et al., 2017). Both factors act redundantly in trophoblast and placenta formation, where they control the self-renewal of stem/progenitor cells and their progressive differentiation (Home et al., 2017). Here again, GATA3 acts as a pioneer factor to activate lineage-specific factors, including Gata2 (Ray et al., 2009). GATA6 is important in the inner cell mass where it modulates the FGF/ERK pathway to control the commitment between primitive endoderm and epiblast (Bessonnard et al., 2014; Schrode et al., 2014). Ectopic expression of GATA6 in ESCs is sufficient to drive them toward the primitive endoderm lineage (Artus et al., 2011; Fujikura et al., 2002; Shimosato et al., 2007), whereas its inactivation blocks primitive endoderm formation and expands the epiblast lineage (Cai et al., 2008).

Conclusions

Since their discovery in the early 1990s, GATA transcription factors have been shown to play essential roles in development, and their study has contributed significantly to our understanding of the basic principles of tissue development and morphogenesis. Their prominent and pleiotropic roles in lineage specification from stem/progenitor cells has been invaluable for deciphering the cellular and molecular mechanisms by which cell diversification and subsequent differentiation occur. The activation of cell type-specific genes by GATA factors is often coupled with a blockade of alternative gene programs, through either activation of lineage-restricted transcription factors, feed-forward loops or mutual antagonisms between drivers of alternative cell fates. This leads to a cascade of regulatory changes that locks in the fate of progenitor progeny and allows the morphogenetic program to proceed. Besides lineage specification, GATA factors also play crucial roles in the early stages of tissue morphogenesis. As expected for such important developmental regulators, most have been associated with deleterious genetic diseases in human.

Moving forward, the greatest challenges will be to integrate the specific activity of GATA factors into the more complex regulatory networks they are part of. It is unclear, for example, what properties and circuitry associated with GATA factors make them suitable for driving specific lineage decisions at the expense of others. Although many cellular defects resulting from GATA perturbation have been identified, few of the underlying gene networks have been characterized in great detail. Are there commonalities between the networks underlying hematopoietic, trophoblast and mammary lineage specification? What differentiates those networks from those in which GATA factors are not directly involved in lineage specification? The close association between GATA factors and hormone signaling (e.g. estrogen, progesterone and androgen signaling) in different organ systems is also intriguing. We can now build on a large amount of data on the reported roles of GATA factors in different developmental systems to tackle the challenging task of integrating phenotypic observations into comprehensive molecular and cellular systems.

Acknowledgements

We apologize to authors whose work could not be cited due to space limitations. Special thanks to the members of the Bouchard laboratory for critical reading of the manuscript.

Footnotes

  • Competing interests

    The authors declare no competing or financial interests.

  • Funding

    M.B. is supported by a grant from the Canadian Institutes of Health Research (MOP-130431) and holds a Senior Research Scholar Award from the Fonds de la Recherche du Québec-Santé. O.S.-F. is supported by a KRESCENT fellowship from the Kidney Foundation of Canada.

  • © 2018. Published by The Company of Biologists Ltd

References

  1. ↵
    1. Ackerman, K. G.,
    2. Wang, J.,
    3. Luo, L.,
    4. Fujiwara, Y.,
    5. Orkin, S. H. and
    6. Beier, D. R.
    (2007). Gata4 is necessary for normal pulmonary lobar development. Am. J. Respir. Cell Mol. Biol. 36, 391-397. doi:10.1165/rcmb.2006-0211RC
    OpenUrlCrossRefPubMedWeb of Science
  2. ↵
    1. Ainoya, K.,
    2. Moriguchi, T.,
    3. Ohmori, S.,
    4. Souma, T.,
    5. Takai, J.,
    6. Morita, M.,
    7. Chandler, K. J.,
    8. Mortlock, D. P.,
    9. Shimizu, R.,
    10. Engel, J. D. et al.
    (2012). UG4 enhancer-driven GATA-2 and bone morphogenetic protein 4 complementation remedies the CAKUT phenotype in Gata2 hypomorphic mutant mice. Mol. Cell. Biol. 32, 2312-2322. doi:10.1128/MCB.06699-11
    OpenUrlAbstract/FREE Full Text
  3. ↵
    1. Ali, A. K.,
    2. Oh, J. S.,
    3. Vivier, E.,
    4. Busslinger, M. and
    5. Lee, S.-H.
    (2016). NK cell-specific Gata3 ablation identifies the maturation program required for bone marrow exit and control of proliferation. J. Immunol. 196, 1753-1767. doi:10.4049/jimmunol.1501593
    OpenUrlAbstract/FREE Full Text
  4. ↵
    1. Allen, H. L.,
    2. Flanagan, S. E.,
    3. Shaw-Smith, C.,
    4. De Franco, E.,
    5. Akerman, I.,
    6. Caswell, R., International Pancreatic Agenesis Consortium,
    7. Ferrer, J.,
    8. Hattersley, A. T. and
    9. Ellard, S.
    (2011). GATA6 haploinsufficiency causes pancreatic agenesis in humans. Nat. Genet. 44, 20-22. doi:10.1038/ng.1035
    OpenUrlCrossRefPubMed
  5. ↵
    1. Appler, J. M.,
    2. Lu, C. C.,
    3. Druckenbrod, N. R.,
    4. Yu, W.-M.,
    5. Koundakjian, E. J. and
    6. Goodrich, L. V.
    (2013). Gata3 is a critical regulator of cochlear wiring. J. Neurosci. 33, 3679-3691. doi:10.1523/JNEUROSCI.4703-12.2013
    OpenUrlAbstract/FREE Full Text
  6. ↵
    1. Artus, J.,
    2. Piliszek, A. and
    3. Hadjantonakis, A.-K.
    (2011). The primitive endoderm lineage of the mouse blastocyst: sequential transcription factor activation and regulation of differentiation by Sox17. Dev. Biol. 350, 393-404. doi:10.1016/j.ydbio.2010.12.007
    OpenUrlCrossRefPubMed
  7. ↵
    1. Asselin-Labat, M.-L.,
    2. Sutherland, K. D.,
    3. Barker, H.,
    4. Thomas, R.,
    5. Shackleton, M.,
    6. Forrest, N. C.,
    7. Hartley, L.,
    8. Robb, L.,
    9. Grosveld, F. G.,
    10. van der Wees, J. et al.
    (2007). Gata-3 is an essential regulator of mammary-gland morphogenesis and luminal-cell differentiation. Nat. Cell Biol. 9, 201-209. doi:10.1038/ncb1530
    OpenUrlCrossRefPubMedWeb of Science
  8. ↵
    1. Bates, D. L.,
    2. Chen, Y.,
    3. Kim, G.,
    4. Guo, L. and
    5. Chen, L.
    (2008). Crystal structures of multiple GATA zinc fingers bound to DNA reveal new insights into DNA recognition and self-association by GATA. J. Mol. Biol. 381, 1292-1306. doi:10.1016/j.jmb.2008.06.072
    OpenUrlCrossRefPubMedWeb of Science
  9. ↵
    1. Battle, M. A.,
    2. Bondow, B. J.,
    3. Iverson, M. A.,
    4. Adams, S. J.,
    5. Jandacek, R. J.,
    6. Tso, P. and
    7. Duncan, S. A.
    (2008). GATA4 is essential for jejunal function in mice. Gastroenterology 135, 1676-1686.e1671. doi:10.1053/j.gastro.2008.07.074
    OpenUrlCrossRefPubMedWeb of Science
  10. ↵
    1. Bennett, J.,
    2. Wu, Y.-G.,
    3. Gossen, J.,
    4. Zhou, P. and
    5. Stocco, C.
    (2012). Loss of GATA-6 and GATA-4 in granulosa cells blocks folliculogenesis, ovulation, and follicle stimulating hormone receptor expression leading to female infertility. Endocrinology 153, 2474-2485. doi:10.1210/en.2011-1969
    OpenUrlCrossRefPubMedWeb of Science
  11. ↵
    1. Bessonnard, S.,
    2. De Mot, L.,
    3. Gonze, D.,
    4. Barriol, M.,
    5. Dennis, C.,
    6. Goldbeter, A.,
    7. Dupont, G. and
    8. Chazaud, C.
    (2014). Gata6, Nanog and Erk signaling control cell fate in the inner cell mass through a tristable regulatory network. Development 141, 3637-3648. doi:10.1242/dev.109678
    OpenUrlAbstract/FREE Full Text
  12. ↵
    1. Beuling, E.,
    2. Bosse, T.,
    3. aan de Kerk, D. J.,
    4. Piaseckyj, C. M.,
    5. Fujiwara, Y.,
    6. Katz, S. G.,
    7. Orkin, S. H.,
    8. Grand, R. J. and
    9. Krasinski, S. D.
    (2008). GATA4 mediates gene repression in the mature mouse small intestine through interactions with friend of GATA (FOG) cofactors. Dev. Biol. 322, 179-189. doi:10.1016/j.ydbio.2008.07.022
    OpenUrlCrossRefPubMedWeb of Science
  13. ↵
    1. Beuling, E.,
    2. Baffour-Awuah, N. Y.,
    3. Stapleton, K. A.,
    4. Aronson, B. E.,
    5. Noah, T. K.,
    6. Shroyer, N. F.,
    7. Duncan, S. A.,
    8. Fleet, J. C. and
    9. Krasinski, S. D.
    (2011). GATA factors regulate proliferation, differentiation, and gene expression in small intestine of mature mice. Gastroenterology 140, 1219-1229.e1211-1212. doi:10.1053/j.gastro.2011.01.033
    OpenUrlCrossRefPubMedWeb of Science
  14. ↵
    1. Beuling, E.,
    2. Aronson, B. E.,
    3. Tran, L. M. D.,
    4. Stapleton, K. A.,
    5. ter Horst, E. N.,
    6. Vissers, L. A. T. M.,
    7. Verzi, M. P. and
    8. Krasinski, S. D.
    (2012). GATA6 is required for proliferation, migration, secretory cell maturation, and gene expression in the mature mouse colon. Mol. Cell. Biol. 32, 3392-3402. doi:10.1128/MCB.00070-12
    OpenUrlAbstract/FREE Full Text
    1. Bielinska, M.,
    2. Jay, P. Y.,
    3. Erlich, J. M.,
    4. Mannisto, S.,
    5. Urban, Z.,
    6. Heikinheimo, M. and
    7. Wilson, D. B.
    (2007). Molecular genetics of congenital diaphragmatic defects. Ann. Med. 39, 261-274. doi:10.1080/07853890701326883
    OpenUrlCrossRefPubMedWeb of Science
  15. ↵
    1. Blobel, G. A.,
    2. Nakajima, T.,
    3. Eckner, R.,
    4. Montminy, M. and
    5. Orkin, S. H.
    (1998). CREB-binding protein cooperates with transcription factor GATA-1 and is required for erythroid differentiation. Proc. Natl. Acad. Sci. USA 95, 2061-2066. doi:10.1073/pnas.95.5.2061
    OpenUrlAbstract/FREE Full Text
  16. ↵
    1. Böhm, M.,
    2. Locke, W. J.,
    3. Sutherland, R. L.,
    4. Kench, J. G. and
    5. Henshall, S. M.
    (2009). A role for GATA-2 in transition to an aggressive phenotype in prostate cancer through modulation of key androgen-regulated genes. Oncogene 28, 3847-3856. doi:10.1038/onc.2009.243
    OpenUrlCrossRefPubMedWeb of Science
  17. ↵
    1. Bonnefond, A.,
    2. Sand, O.,
    3. Guerin, B.,
    4. Durand, E.,
    5. De Graeve, F.,
    6. Huyvaert, M.,
    7. Rachdi, L.,
    8. Kerr-Conte, J.,
    9. Pattou, F.,
    10. Vaxillaire, M. et al.
    (2012). GATA6 inactivating mutations are associated with heart defects and, inconsistently, with pancreatic agenesis and diabetes. Diabetologia 55, 2845-2847. doi:10.1007/s00125-012-2645-7
    OpenUrlCrossRefPubMed
  18. ↵
    1. Bossard, P. and
    2. Zaret, K. S.
    (1998). GATA transcription factors as potentiators of gut endoderm differentiation. Development 125, 4909-4917.
    OpenUrlAbstract
  19. ↵
    1. Bosse, T.,
    2. Piaseckyj, C. M.,
    3. Burghard, E.,
    4. Fialkovich, J. J.,
    5. Rajagopal, S.,
    6. Pu, W. T. and
    7. Krasinski, S. D.
    (2006). Gata4 is essential for the maintenance of jejunal-ileal identities in the adult mouse small intestine. Mol. Cell. Biol. 26, 9060-9070. doi:10.1128/MCB.00124-06
    OpenUrlAbstract/FREE Full Text
    1. Bosse, T.,
    2. Fialkovich, J. J.,
    3. Piaseckyj, C. M.,
    4. Beuling, E.,
    5. Broekman, H.,
    6. Grand, R. J.,
    7. Montgomery, R. K. and
    8. Krasinski, S. D.
    (2007). Gata4 and Hnf1alpha are partially required for the expression of specific intestinal genes during development. Am. J. Physiol. Gastrointest. Liver Physiol. 292, G1302-1314. doi:10.1152/ajpgi.00418.2006
    OpenUrlCrossRefPubMedWeb of Science
  20. ↵
    1. Boualia, S. K.,
    2. Gaitan, Y.,
    3. Tremblay, M.,
    4. Sharma, R.,
    5. Cardin, J.,
    6. Kania, A. and
    7. Bouchard, M.
    (2013). A core transcriptional network composed of Pax2/8, Gata3 and Lim1 regulates key players of pro/mesonephros morphogenesis. Dev. Biol. 382, 555-566. doi:10.1016/j.ydbio.2013.07.028
    OpenUrlCrossRefPubMed
  21. ↵
    1. Bouma, G. J.,
    2. Washburn, L. L.,
    3. Albrecht, K. H. and
    4. Eicher, E. M.
    (2007). Correct dosage of Fog2 and Gata4 transcription factors is critical for fetal testis development in mice. Proc. Natl. Acad. Sci. USA 104, 14994-14999. doi:10.1073/pnas.0701677104
    OpenUrlAbstract/FREE Full Text
  22. ↵
    1. Bresnick, E. H.,
    2. Lee, H.-Y.,
    3. Fujiwara, T.,
    4. Johnson, K. D. and
    5. Keles, S.
    (2010). GATA switches as developmental drivers. J. Biol. Chem. 285, 31087-31093. doi:10.1074/jbc.R110.159079
    OpenUrlAbstract/FREE Full Text
  23. ↵
    1. Cai, K. Q.,
    2. Capo-Chichi, C. D.,
    3. Rula, M. E.,
    4. Yang, D.-H. and
    5. Xu, X.-X.
    (2008). Dynamic GATA6 expression in primitive endoderm formation and maturation in early mouse embryogenesis. Dev. Dyn. 237, 2820-2829. doi:10.1002/dvdy.21703
    OpenUrlCrossRefPubMed
  24. ↵
    1. Cantor, A. B.,
    2. Iwasaki, H.,
    3. Arinobu, Y.,
    4. Moran, T. B.,
    5. Shigematsu, H.,
    6. Sullivan, M. R.,
    7. Akashi, K. and
    8. Orkin, S. H.
    (2008). Antagonism of FOG-1 and GATA factors in fate choice for the mast cell lineage. J. Exp. Med. 205, 611-624. doi:10.1084/jem.20070544
    OpenUrlAbstract/FREE Full Text
  25. ↵
    1. Carrasco, M.,
    2. Delgado, I.,
    3. Soria, B.,
    4. Martín, F. and
    5. Rojas, A.
    (2012). GATA4 and GATA6 control mouse pancreas organogenesis. J. Clin. Invest. 122, 3504-3515. doi:10.1172/JCI63240
    OpenUrlCrossRefPubMedWeb of Science
  26. ↵
    1. Chao, C. S.,
    2. McKnight, K. D.,
    3. Cox, K. L.,
    4. Chang, A. L.,
    5. Kim, S. K. and
    6. Feldman, B. J.
    (2015). Novel GATA6 mutations in patients with pancreatic agenesis and congenital heart malformations. PLoS ONE 10, e0118449. doi:10.1371/journal.pone.0118449
    OpenUrlCrossRef
    1. Charles, M. A.,
    2. Saunders, T. L.,
    3. Wood, W. M.,
    4. Owens, K.,
    5. Parlow, A. F.,
    6. Camper, S. A.,
    7. Ridgway, E. C. and
    8. Gordon, D. F.
    (2006). Pituitary-specific Gata2 knockout: effects on gonadotrope and thyrotrope function. Mol. Endocrinol. 20, 1366-1377. doi:10.1210/me.2005-0378
    OpenUrlCrossRefPubMedWeb of Science
    1. Chen, S. R.,
    2. Tang, J. X.,
    3. Cheng, J. M.,
    4. Li, J.,
    5. Jin, C.,
    6. Li, X. Y.,
    7. Deng, S. L.,
    8. Zhang, Y.,
    9. Wang, X. X. and
    10. Liu, Y. X.
    (2015). Loss of Gata4 in Sertoli cells impairs the spermatogonial stem cell niche and causes germ cell exhaustion by attenuating chemokine signaling. Oncotarget 6, 37012-37027. doi:10.18632/oncotarget.6115
    OpenUrlCrossRefPubMed
  27. ↵
    1. Chia, I.,
    2. Grote, D.,
    3. Marcotte, M.,
    4. Batourina, E.,
    5. Mendelsohn, C. and
    6. Bouchard, M.
    (2011). Nephric duct insertion is a crucial step in urinary tract maturation that is regulated by a Gata3-Raldh2-Ret molecular network in mice. Development 138, 2089-2097. doi:10.1242/dev.056838
    OpenUrlAbstract/FREE Full Text
  28. ↵
    1. Chikh, A.,
    2. Sayan, E.,
    3. Thibaut, S.,
    4. Lena, A. M.,
    5. DiGiorgi, S.,
    6. Bernard, B. A.,
    7. Melino, G. and
    8. Candi, E.
    (2007). Expression of GATA-3 in epidermis and hair follicle: relationship to p63. Biochem. Biophys. Res. Commun. 361, 1-6. doi:10.1016/j.bbrc.2007.06.069
    OpenUrlCrossRefPubMed
  29. ↵
    1. Chlon, T. M. and
    2. Crispino, J. D.
    (2012). Combinatorial regulation of tissue specification by GATA and FOG factors. Development 139, 3905-3916. doi:10.1242/dev.080440
    OpenUrlAbstract/FREE Full Text
  30. ↵
    1. Chun, T.-H.,
    2. Itoh, H.,
    3. Subramanian, L.,
    4. Iniguez-Lluhi, J. A. and
    5. Nakao, K.
    (2003). Modification of GATA-2 transcriptional activity in endothelial cells by the SUMO E3 ligase PIASy. Circ. Res. 92, 1201-1208. doi:10.1161/01.RES.0000076893.70898.36
    OpenUrlAbstract/FREE Full Text
  31. ↵
    1. Cirillo, L. A.,
    2. Lin, F. R.,
    3. Cuesta, I.,
    4. Friedman, D.,
    5. Jarnik, M. and
    6. Zaret, K. S.
    (2002). Opening of compacted chromatin by early developmental transcription factors HNF3 (FoxA) and GATA-4. Mol. Cell 9, 279-289. doi:10.1016/S1097-2765(02)00459-8
    OpenUrlCrossRefPubMedWeb of Science
  32. ↵
    1. Clabby, M. L.,
    2. Robison, T. A.,
    3. Quigley, H. F.,
    4. Wilson, D. B. and
    5. Kelly, D. P.
    (2003). Retinoid X receptor alpha represses GATA-4-mediated transcription via a retinoid-dependent interaction with the cardiac-enriched repressor FOG-2. J. Biol. Chem. 278, 5760-5767. doi:10.1074/jbc.M208173200
    OpenUrlAbstract/FREE Full Text
  33. ↵
    1. Clowes, C.,
    2. Boylan, M. G. S.,
    3. Ridge, L. A.,
    4. Barnes, E.,
    5. Wright, J. A. and
    6. Hentges, K. E.
    (2014). The functional diversity of essential genes required for mammalian cardiac development. Genesis 52, 713-737. doi:10.1002/dvg.22794
    OpenUrlCrossRef
  34. ↵
    1. Collavin, L.,
    2. Gostissa, M.,
    3. Avolio, F.,
    4. Secco, P.,
    5. Ronchi, A.,
    6. Santoro, C. and
    7. Del Sal, G.
    (2004). Modification of the erythroid transcription factor GATA-1 by SUMO-1. Proc. Natl. Acad. Sci. USA 101, 8870-8875. doi:10.1073/pnas.0308605101
    OpenUrlAbstract/FREE Full Text
    1. Convissar, S. M.,
    2. Bennett, J.,
    3. Baumgarten, S. C.,
    4. Lydon, J. P.,
    5. DeMayo, F. J. and
    6. Stocco, C.
    (2015). GATA4 and GATA6 knockdown during luteinization inhibits progesterone production and gonadotropin responsiveness in the corpus luteum of female mice. Biol. Reprod. 93, 133. doi:10.1095/biolreprod.115.132969
    OpenUrlAbstract/FREE Full Text
  35. ↵
    1. Craven, S. E.,
    2. Lim, K.-C.,
    3. Ye, W.,
    4. Engel, J. D.,
    5. de Sauvage, F. and
    6. Rosenthal, A.
    (2004). Gata2 specifies serotonergic neurons downstream of sonic hedgehog. Development 131, 1165-1173. doi:10.1242/dev.01024
    OpenUrlAbstract/FREE Full Text
  36. ↵
    1. Crispino, J. D.,
    2. Lodish, M. B.,
    3. Thurberg, B. L.,
    4. Litovsky, S. H.,
    5. Collins, T.,
    6. Molkentin, J. D. and
    7. Orkin, S. H.
    (2001). Proper coronary vascular development and heart morphogenesis depend on interaction of GATA-4 with FOG cofactors. Genes Dev. 15, 839-844. doi:10.1101/gad.875201
    OpenUrlAbstract/FREE Full Text
  37. ↵
    1. Dai, Y.-S. and
    2. Markham, B. E.
    (2001). p300 Functions as a coactivator of transcription factor GATA-4. J. Biol. Chem. 276, 37178-37185. doi:10.1074/jbc.M103731200
    OpenUrlAbstract/FREE Full Text
  38. ↵
    1. Dasen, J. S.,
    2. O'Connell, S. M.,
    3. Flynn, S. E.,
    4. Treier, M.,
    5. Gleiberman, A. S.,
    6. Szeto, D. P.,
    7. Hooshmand, F.,
    8. Aggarwal, A. K. and
    9. Rosenfeld, M. G.
    (1999). Reciprocal interactions of Pit1 and GATA2 mediate signaling gradient-induced determination of pituitary cell types. Cell 97, 587-598. doi:10.1016/S0092-8674(00)80770-9
    OpenUrlCrossRefPubMedWeb of Science
  39. ↵
    1. De Franco, E.,
    2. Shaw-Smith, C.,
    3. Flanagan, S. E.,
    4. Shepherd, M. H.,
    5. International, N. D. M. C.,
    6. Hattersley, A. T. and
    7. Ellard, S.
    (2013). GATA6 mutations cause a broad phenotypic spectrum of diabetes from pancreatic agenesis to adult-onset diabetes without exocrine insufficiency. Diabetes 62, 993-997. doi:10.2337/db12-0885
    OpenUrlAbstract/FREE Full Text
  40. ↵
    1. de Guzman Strong, C.,
    2. Wertz, P. W.,
    3. Wang, C.,
    4. Yang, F.,
    5. Meltzer, P. S.,
    6. Andl, T.,
    7. Millar, S. E.,
    8. Ho, I.-C.,
    9. Pai, S.-Y. and
    10. Segre, J. A.
    (2006). Lipid defect underlies selective skin barrier impairment of an epidermal-specific deletion of Gata-3. J. Cell Biol. 175, 661-670. doi:10.1083/jcb.200605057
    OpenUrlAbstract/FREE Full Text
  41. ↵
    1. Decker, K.,
    2. Goldman, D. C.,
    3. Grasch, C. L. and
    4. Sussel, L.
    (2006). Gata6 is an important regulator of mouse pancreas development. Dev. Biol. 298, 415-429. doi:10.1016/j.ydbio.2006.06.046
    OpenUrlCrossRefPubMedWeb of Science
    1. Delgado, I.,
    2. Carrasco, M.,
    3. Cano, E.,
    4. Carmona, R.,
    5. García-Carbonero, R.,
    6. Marín-Gómez, L. M.,
    7. Soria, B.,
    8. Martín, F.,
    9. Cano, D. A.,
    10. Muñoz-Chápuli, R., et al.
    (2014). GATA4 loss in the septum transversum mesenchyme promotes liver fibrosis in mice. Hepatology 59, 2358-2370. doi:10.1002/hep.27005
    OpenUrlCrossRefPubMed
    1. Duncan, J. S. and
    2. Fritzsch, B.
    (2013). Continued expression of GATA3 is necessary for cochlear neurosensory development. PLoS ONE 8, e62046. doi:10.1371/journal.pone.0062046
    OpenUrlCrossRefPubMed
  42. ↵
    1. Duncan, J. S.,
    2. Lim, K.-C.,
    3. Engel, J. D. and
    4. Fritzsch, B.
    (2011). Limited inner ear morphogenesis and neurosensory development are possible in the absence of GATA3. Int. J. Dev. Biol. 55, 297-303. doi:10.1387/ijdb.103178jd
    OpenUrlCrossRefPubMed
  43. ↵
    1. Durocher, D.,
    2. Charron, F.,
    3. Warren, R.,
    4. Schwartz, R. J. and
    5. Nemer, M.
    (1997). The cardiac transcription factors Nkx2-5 and GATA-4 are mutual cofactors. EMBO J. 16, 5687-5696. doi:10.1093/emboj/16.18.5687
    OpenUrlAbstract/FREE Full Text
  44. ↵
    1. Eeckhoute, J.,
    2. Keeton, E. K.,
    3. Lupien, M.,
    4. Krum, S. A.,
    5. Carroll, J. S. and
    6. Brown, M.
    (2007). Positive cross-regulatory loop ties GATA-3 to estrogen receptor alpha expression in breast cancer. Cancer Res. 67, 6477-6483. doi:10.1158/0008-5472.CAN-07-0746
    OpenUrlAbstract/FREE Full Text
  45. ↵
    1. Efimenko, E.,
    2. Padua, M. B.,
    3. Manuylov, N. L.,
    4. Fox, S. C.,
    5. Morse, D. A. and
    6. Tevosian, S. G.
    (2013). The transcription factor GATA4 is required for follicular development and normal ovarian function. Dev. Biol. 381, 144-158. doi:10.1016/j.ydbio.2013.06.004
    OpenUrlCrossRefPubMed
    1. Enane, F. O.,
    2. Shuen, W. H.,
    3. Gu, X.,
    4. Quteba, E.,
    5. Przychodzen, B.,
    6. Makishima, H.,
    7. Bodo, J.,
    8. Ng, J.,
    9. Chee, C. L.,
    10. Ba, R., et al.
    (2017). GATA4 loss of function in liver cancer impedes precursor to hepatocyte transition. J. Clin. Invest. 127, 3527-3542. doi:10.1172/JCI93488
    OpenUrlCrossRef
  46. ↵
    1. Epstein, J. A. and
    2. Buck, C. A.
    (2000). Transcriptional regulation of cardiac development: implications for congenital heart disease and DiGeorge syndrome. Pediatr. Res. 48, 717-724. doi:10.1203/00006450-200012000-00003
    OpenUrlCrossRefPubMedWeb of Science
  47. ↵
    1. Fang, R.,
    2. Olds, L. C. and
    3. Sibley, E.
    (2006). Spatio-temporal patterns of intestine-specific transcription factor expression during postnatal mouse gut development. Gene Expr. Patterns 6, 426-432. doi:10.1016/j.modgep.2005.09.003
    OpenUrlCrossRefPubMed
  48. ↵
    1. Flodby, P.,
    2. Li, C.,
    3. Liu, Y.,
    4. Wang, H.,
    5. Rieger, M. E.,
    6. Minoo, P.,
    7. Crandall, E. D.,
    8. Ann, D. K.,
    9. Borok, Z. and
    10. Zhou, B.
    (2017). Cell-specific expression of aquaporin-5 (Aqp5) in alveolar epithelium is directed by GATA6/Sp1 via histone acetylation. Sci. Rep. 7, 3473. doi:10.1038/s41598-017-03152-7
    OpenUrlCrossRef
  49. ↵
    1. Fox, A. H.,
    2. Liew, C.,
    3. Holmes, M.,
    4. Kowalski, K.,
    5. Mackay, J. and
    6. Crossley, M.
    (1999). Transcriptional cofactors of the FOG family interact with GATA proteins by means of multiple zinc fingers. EMBO J. 18, 2812-2822. doi:10.1093/emboj/18.10.2812
    OpenUrlAbstract
  50. ↵
    1. Frelin, C.,
    2. Herrington, R.,
    3. Janmohamed, S.,
    4. Barbara, M.,
    5. Tran, G.,
    6. Paige, C. J.,
    7. Benveniste, P.,
    8. Zuñiga-Pflücker, J.-C.,
    9. Souabni, A.,
    10. Busslinger, M. et al.
    (2013). GATA-3 regulates the self-renewal of long-term hematopoietic stem cells. Nat. Immunol. 14, 1037-1044. doi:10.1038/ni.2692
    OpenUrlCrossRefPubMed
  51. ↵
    1. Fujikura, J.,
    2. Yamato, E.,
    3. Yonemura, S.,
    4. Hosoda, K.,
    5. Masui, S.,
    6. Nakao, K.,
    7. Miyazaki Ji, J. and
    8. Niwa, H.
    (2002). Differentiation of embryonic stem cells is induced by GATA factors. Genes Dev. 16, 784-789. doi:10.1101/gad.968802
    OpenUrlAbstract/FREE Full Text
  52. ↵
    1. Fujiwara, Y.,
    2. Browne, C. P.,
    3. Cunniff, K.,
    4. Goff, S. C. and
    5. Orkin, S. H.
    (1996). Arrested development of embryonic red cell precursors in mouse embryos lacking transcription factor GATA-1. Proc. Natl. Acad. Sci. USA 93, 12355-12358. doi:10.1073/pnas.93.22.12355
    OpenUrlAbstract/FREE Full Text
  53. ↵
    1. Fujiwara, Y.,
    2. Chang, A. N.,
    3. Williams, A. M. and
    4. Orkin, S. H.
    (2004). Functional overlap of GATA-1 and GATA-2 in primitive hematopoietic development. Blood 103, 583-585. doi:10.1182/blood-2003-08-2870
    OpenUrlAbstract/FREE Full Text
  54. ↵
    1. Garg, V.,
    2. Kathiriya, I. S.,
    3. Barnes, R.,
    4. Schluterman, M. K.,
    5. King, I. N.,
    6. Butler, C. A.,
    7. Rothrock, C. R.,
    8. Eapen, R. S.,
    9. Hirayama-Yamada, K.,
    10. Joo, K. et al.
    (2003). GATA4 mutations cause human congenital heart defects and reveal an interaction with TBX5. Nature 424, 443-447. doi:10.1038/nature01827
    OpenUrlCrossRefPubMedWeb of Science
    1. Gautier, E. L.,
    2. Ivanov, S.,
    3. Williams, J. W.,
    4. Huang, S. C.-C.,
    5. Marcelin, G.,
    6. Fairfax, K.,
    7. Wang, P. L.,
    8. Francis, J. S.,
    9. Leone, P.,
    10. Wilson, D. B., et al.
    (2014). Gata6 regulates aspartoacylase expression in resident peritoneal macrophages and controls their survival. J. Exp. Med. 211, 1525-1531. doi:10.1084/jem.20140570
    OpenUrlAbstract/FREE Full Text
  55. ↵
    1. Genander, M.,
    2. Cook, P. J.,
    3. Ramsköld, D.,
    4. Keyes, B. E.,
    5. Mertz, A. F.,
    6. Sandberg, R. and
    7. Fuchs, E.
    (2014). BMP signaling and its pSMAD1/5 target genes differentially regulate hair follicle stem cell lineages. Cell Stem Cell 15, 619-633. doi:10.1016/j.stem.2014.09.009
    OpenUrlCrossRefPubMed
  56. ↵
    1. Géraud, C.,
    2. Koch, P.-S.,
    3. Zierow, J.,
    4. Klapproth, K.,
    5. Busch, K.,
    6. Olsavszky, V.,
    7. Leibing, T.,
    8. Demory, A.,
    9. Ulbrich, F.,
    10. Diett, M. et al.
    (2017). GATA4-dependent organ-specific endothelial differentiation controls liver development and embryonic hematopoiesis. J. Clin. Invest. 127, 1099-1114. doi:10.1172/JCI90086
    OpenUrlCrossRefPubMed
    1. Ghatnekar, A.,
    2. Chrobak, I.,
    3. Reese, C.,
    4. Stawski, L.,
    5. Seta, F.,
    6. Wirrig, E.,
    7. Paez-Cortez, J.,
    8. Markiewicz, M.,
    9. Asano, Y.,
    10. Harley, R., et al.
    (2013). Endothelial GATA-6 deficiency promotes pulmonary arterial hypertension. Am. J. Pathol. 182, 2391-2406. doi:10.1016/j.ajpath.2013.02.039
    OpenUrlCrossRef
  57. ↵
    1. Goardon, N.,
    2. Lambert, J. A.,
    3. Rodriguez, P.,
    4. Nissaire, P.,
    5. Herblot, S.,
    6. Thibault, P.,
    7. Dumenil, D.,
    8. Strouboulis, J.,
    9. Romeo, P.-H. and
    10. Hoang, T.
    (2006). ETO2 coordinates cellular proliferation and differentiation during erythropoiesis. EMBO J. 25, 357-366. doi:10.1038/sj.emboj.7600934
    OpenUrlCrossRefPubMedWeb of Science
  58. ↵
    1. Gonzales, K. A. U. and
    2. Fuchs, E.
    (2017). Skin and its regenerative powers: an alliance between stem cells and their Niche. Dev. Cell 43, 387-401. doi:10.1016/j.devcel.2017.10.001
    OpenUrlCrossRef
  59. ↵
    1. Grass, J. A.,
    2. Jing, H.,
    3. Kim, S.-I.,
    4. Martowicz, M. L.,
    5. Pal, S.,
    6. Blobel, G. A. and
    7. Bresnick, E. H.
    (2006). Distinct functions of dispersed GATA factor complexes at an endogenous gene locus. Mol. Cell. Biol. 26, 7056-7067. doi:10.1128/MCB.01033-06
    OpenUrlAbstract/FREE Full Text
    1. Grigorieva, I. V.,
    2. Mirczuk, S.,
    3. Gaynor, K. U.,
    4. Nesbit, M. A.,
    5. Grigorieva, E. F.,
    6. Wei, Q.,
    7. Ali, A.,
    8. Fairclough, R. J.,
    9. Stacey, J. M.,
    10. Stechman, M. J., et al.
    (2010). Gata3-deficient mice develop parathyroid abnormalities due to dysregulation of the parathyroid-specific transcription factor Gcm2. J. Clin. Invest. 120, 2144-2155. doi:10.1172/JCI42021
    OpenUrlCrossRefPubMedWeb of Science
  60. ↵
    1. Grote, D.,
    2. Souabni, A.,
    3. Busslinger, M. and
    4. Bouchard, M.
    (2006). Pax2/8-regulated Gata3 expression is necessary for morphogenesis and guidance of the nephric duct in the developing kidney. Development 133, 53-61. doi:10.1242/dev.02184
    OpenUrlAbstract/FREE Full Text
  61. ↵
    1. Grote, D.,
    2. Boualia, S. K.,
    3. Souabni, A.,
    4. Merkel, C.,
    5. Chi, X.,
    6. Costantini, F.,
    7. Carroll, T. and
    8. Bouchard, M.
    (2008). Gata3 acts downstream of beta-catenin signaling to prevent ectopic metanephric kidney induction. PLoS Genet. 4, e1000316. doi:10.1371/journal.pgen.1000316
    OpenUrlCrossRefPubMed
  62. ↵
    1. Güemes, M.,
    2. Garcia, A. J.,
    3. Rigueur, D.,
    4. Runke, S.,
    5. Wang, W.,
    6. Zhao, G.,
    7. Mayorga, V. H.,
    8. Atti, E.,
    9. Tetradis, S.,
    10. Péault, B. et al.
    (2014). GATA4 is essential for bone mineralization via ERalpha and TGFbeta/BMP pathways. J. Bone Miner. Res. 29, 2676-2687. doi:10.1002/jbmr.2296
    OpenUrlCrossRef
    1. Guo, S.,
    2. Zhang, Y.,
    3. Zhou, T.,
    4. Wang, D.,
    5. Weng, Y.,
    6. Wang, L. and
    7. Ma, J.
    (2017). Role of GATA binding protein 4 (GATA4) in the regulation of tooth development via GNAI3. Sci. Rep. 7, 1534. doi:10.1038/s41598-017-01689-1
    OpenUrlCrossRef
    1. Guo, S.,
    2. Zhang, Y.,
    3. Zhou, T.,
    4. Wang, D.,
    5. Weng, Y.,
    6. Chen, Q.,
    7. Ma, J.,
    8. Li, Y. P. and
    9. Wang, L.
    (2018). GATA4 as a novel regulator involved in the development of the neural crest and craniofacial skeleton via Barx1. Cell Death Differ, 1-14. doi:10.1038/s41418-018-0083-x
    OpenUrlCrossRef
    1. Gutierrez, L.,
    2. Lindeboom, F.,
    3. Langeveld, A.,
    4. Grosveld, F.,
    5. Philipsen, S. and
    6. Whyatt, D.
    (2004). Homotypic signalling regulates Gata1 activity in the erythroblastic island. Development 131, 3183-3193. doi:10.1242/dev.01198
    OpenUrlAbstract/FREE Full Text
  63. ↵
    1. Gutierrez, L.,
    2. Nikolic, T.,
    3. van Dijk, T. B.,
    4. Hammad, H.,
    5. Vos, N.,
    6. Willart, M.,
    7. Grosveld, F.,
    8. Philipsen, S. and
    9. Lambrecht, B. N.
    (2007). Gata1 regulates dendritic-cell development and survival. Blood 110, 1933-1941. doi:10.1182/blood-2006-09-048322
    OpenUrlAbstract/FREE Full Text
    1. Gutierrez, L.,
    2. Tsukamoto, S.,
    3. Suzuki, M.,
    4. Yamamoto-Mukai, H.,
    5. Yamamoto, M.,
    6. Philipsen, S. and
    7. Ohneda, K.
    (2008). Ablation of Gata1 in adult mice results in aplastic crisis, revealing its essential role in steady-state and stress erythropoiesis. Blood 111, 4375-4385. doi:10.1182/blood-2007-09-115121
    OpenUrlAbstract/FREE Full Text
  64. ↵
    1. Harigae, H.,
    2. Takahashi, S.,
    3. Suwabe, N.,
    4. Ohtsu, H.,
    5. Gu, L.,
    6. Yang, Z.,
    7. Tsai, F.-Y.,
    8. Kitamura, Y.,
    9. Engel, J. D. and
    10. Yamamoto, M.
    (1998). Differential roles of GATA-1 and GATA-2 in growth and differentiation of mast cells. Genes Cells 3, 39-50. doi:10.1046/j.1365-2443.1998.00166.x
    OpenUrlCrossRefPubMedWeb of Science
  65. ↵
    1. Hasegawa, S. L.,
    2. Moriguchi, T.,
    3. Rao, A.,
    4. Kuroha, T.,
    5. Engel, J. D. and
    6. Lim, K.-C.
    (2007). Dosage-dependent rescue of definitive nephrogenesis by a distant Gata3 enhancer. Dev. Biol. 301, 568-577. doi:10.1016/j.ydbio.2006.09.030
    OpenUrlCrossRefPubMed
  66. ↵
    1. Haugas, M.,
    2. Lilleväli, K.,
    3. Hakanen, J. and
    4. Salminen, M.
    (2010). Gata2 is required for the development of inner ear semicircular ducts and the surrounding perilymphatic space. Dev. Dyn. 239, 2452-2469. doi:10.1002/dvdy.22373
    OpenUrlCrossRefPubMed
  67. ↵
    1. Haugas, M.,
    2. Lilleväli, K. and
    3. Salminen, M.
    (2012). Defects in sensory organ morphogenesis and generation of cochlear hair cells in Gata3-deficient mouse embryos. Hear. Res. 283, 151-161. doi:10.1016/j.heares.2011.10.010
    OpenUrlCrossRefPubMed
  68. ↵
    1. Haugas, M.,
    2. Tikker, L.,
    3. Achim, K.,
    4. Salminen, M. and
    5. Partanen, J.
    (2016). Gata2 and Gata3 regulate the differentiation of serotonergic and glutamatergic neuron subtypes of the dorsal raphe. Development 143, 4495-4508. doi:10.1242/dev.136614
    OpenUrlAbstract/FREE Full Text
    1. Hayashi, S.,
    2. Akiyama, R.,
    3. Wong, J.,
    4. Tahara, N.,
    5. Kawakami, H. and
    6. Kawakami, Y.
    (2016). Gata6-dependent GLI3 repressor function is essential in anterior limb progenitor cells for proper limb development. PLoS Genet. 12, e1006138. doi:10.1371/journal.pgen.1006138
    OpenUrlCrossRef
  69. ↵
    1. He, A.,
    2. Shen, X.,
    3. Ma, Q.,
    4. Cao, J.,
    5. von Gise, A.,
    6. Zhou, P.,
    7. Wang, G.,
    8. Marquez, V. E.,
    9. Orkin, S. H. and
    10. Pu, W. T.
    (2012). PRC2 directly methylates GATA4 and represses its transcriptional activity. Genes Dev. 26, 37-42. doi:10.1101/gad.173930.111
    OpenUrlAbstract/FREE Full Text
  70. ↵
    1. He, B.,
    2. Lanz, R. B.,
    3. Fiskus, W.,
    4. Geng, C.,
    5. Yi, P.,
    6. Hartig, S. M.,
    7. Rajapakshe, K.,
    8. Shou, J.,
    9. Wei, L.,
    10. Shah, S. S. et al.
    (2014). GATA2 facilitates steroid receptor coactivator recruitment to the androgen receptor complex. Proc. Natl. Acad. Sci. USA 111, 18261-18266. doi:10.1073/pnas.1421415111
    OpenUrlAbstract/FREE Full Text
  71. ↵
    1. Hernández-Hoyos, G.,
    2. Anderson, M. K.,
    3. Wang, C.,
    4. Rothenberg, E. V. and
    5. Alberola-Ila, J.
    (2003). GATA-3 expression is controlled by TCR signals and regulates CD4/CD8 differentiation. Immunity 19, 83-94. doi:10.1016/S1074-7613(03)00176-6
    OpenUrlCrossRefPubMedWeb of Science
  72. ↵
    1. Heyworth, C.,
    2. Gale, K.,
    3. Dexter, M.,
    4. May, G. and
    5. Enver, T.
    (1999). A GATA-2/estrogen receptor chimera functions as a ligand-dependent negative regulator of self-renewal. Genes Dev. 13, 1847-1860. doi:10.1101/gad.13.14.1847
    OpenUrlAbstract/FREE Full Text
  73. ↵
    1. Hirasawa, R.,
    2. Shimizu, R.,
    3. Takahashi, S.,
    4. Osawa, M.,
    5. Takayanagi, S.,
    6. Kato, Y.,
    7. Onodera, M.,
    8. Minegishi, N.,
    9. Yamamoto, M.,
    10. Fukao, K. et al.
    (2002). Essential and instructive roles of GATA factors in eosinophil development. J. Exp. Med. 195, 1379-1386. doi:10.1084/jem.20020170
    OpenUrlAbstract/FREE Full Text
  74. ↵
    1. Home, P.,
    2. Kumar, R. P.,
    3. Ganguly, A.,
    4. Saha, B.,
    5. Milano-Foster, J.,
    6. Bhattacharya, B.,
    7. Ray, S.,
    8. Gunewardena, S.,
    9. Paul, A.,
    10. Camper, S. A. et al.
    (2017). Genetic redundancy of GATA factors in the extraembryonic trophoblast lineage ensures the progression of preimplantation and postimplantation mammalian development. Development 144, 876-888. doi:10.1242/dev.145318
    OpenUrlAbstract/FREE Full Text
  75. ↵
    1. Hong, W.,
    2. Nakazawa, M.,
    3. Chen, Y.-Y.,
    4. Kori, R.,
    5. Vakoc, C. R.,
    6. Rakowski, C. and
    7. Blobel, G. A.
    (2005). FOG-1 recruits the NuRD repressor complex to mediate transcriptional repression by GATA-1. EMBO J. 24, 2367-2378. doi:10.1038/sj.emboj.7600703
    OpenUrlAbstract/FREE Full Text
  76. ↵
    1. Hoppe, P. S.,
    2. Schwarzfischer, M.,
    3. Loeffler, D.,
    4. Kokkaliaris, K. D.,
    5. Hilsenbeck, O.,
    6. Moritz, N.,
    7. Endele, M.,
    8. Filipczyk, A.,
    9. Gambardella, A.,
    10. Ahmed, N. et al.
    (2016). Early myeloid lineage choice is not initiated by random PU.1 to GATA1 protein ratios. Nature 535, 299-302. doi:10.1038/nature18320
    OpenUrlCrossRefPubMed
  77. ↵
    1. Hoshino, T.,
    2. Shimizu, R.,
    3. Ohmori, S.,
    4. Nagano, M.,
    5. Pan, X.,
    6. Ohneda, O.,
    7. Khandekar, M.,
    8. Yamamoto, M.,
    9. Lim, K.-C. and
    10. Engel, J. D.
    (2008). Reduced BMP4 abundance in Gata2 hypomorphic mutant mice result in uropathies resembling human CAKUT. Genes Cells 13, 159-170. doi:10.1111/j.1365-2443.2007.01158.x
    OpenUrlCrossRefPubMedWeb of Science
  78. ↵
    1. Hosokawa, H.,
    2. Tanaka, T.,
    3. Kato, M.,
    4. Shinoda, K.,
    5. Tohyama, H.,
    6. Hanazawa, A.,
    7. Tamaki, Y.,
    8. Hirahara, K.,
    9. Yagi, R.,
    10. Sakikawa, I. et al.
    (2013a). Gata3/Ruvbl2 complex regulates T helper 2 cell proliferation via repression of Cdkn2c expression. Proc. Natl. Acad. Sci. USA 110, 18626-18631. doi:10.1073/pnas.1311100110
    OpenUrlAbstract/FREE Full Text
  79. ↵
    1. Hosokawa, H.,
    2. Tanaka, T.,
    3. Suzuki, Y.,
    4. Iwamura, C.,
    5. Ohkubo, S.,
    6. Endoh, K.,
    7. Kato, M.,
    8. Endo, Y.,
    9. Onodera, A.,
    10. Tumes, D. J. et al.
    (2013b). Functionally distinct Gata3/Chd4 complexes coordinately establish T helper 2 (Th2) cell identity. Proc. Natl. Acad. Sci. USA 110, 4691-4696. doi:10.1073/pnas.1220865110
    OpenUrlAbstract/FREE Full Text
  80. ↵
    1. Hosokawa, H.,
    2. Tanaka, T.,
    3. Endo, Y.,
    4. Kato, M.,
    5. Shinoda, K.,
    6. Suzuki, A.,
    7. Motohashi, S.,
    8. Matsumoto, M.,
    9. Nakayama, K. I. and
    10. Nakayama, T.
    (2016). Akt1-mediated Gata3 phosphorylation controls the repression of IFNgamma in memory-type Th2 cells. Nat. Commun. 7, 11289. doi:10.1038/ncomms11289
    OpenUrlCrossRef
    1. Hoyler, T.,
    2. Klose, C. S. N.,
    3. Souabni, A.,
    4. Turqueti-Neves, A.,
    5. Pfeifer, D.,
    6. Rawlins, E. L.,
    7. Voehringer, D.,
    8. Busslinger, M. and
    9. Diefenbach, A.
    (2012). The transcription factor GATA-3 controls cell fate and maintenance of type 2 innate lymphoid cells. Immunity 37, 634-648. doi:10.1016/j.immuni.2012.06.020
    OpenUrlCrossRefPubMedWeb of Science
  81. ↵
    1. Hsu, A. P.,
    2. Sampaio, E. P.,
    3. Khan, J.,
    4. Calvo, K. R.,
    5. Lemieux, J. E.,
    6. Patel, S. Y.,
    7. Frucht, D. M.,
    8. Vinh, D. C.,
    9. Auth, R. D.,
    10. Freeman, A. F. et al.
    (2011). Mutations in GATA2 are associated with the autosomal dominant and sporadic monocytopenia and mycobacterial infection (MonoMAC) syndrome. Blood 118, 2653-2655. doi:10.1182/blood-2011-05-356352
    OpenUrlAbstract/FREE Full Text
  82. ↵
    1. Hu, Y.-C.,
    2. Okumura, L. M. and
    3. Page, D. C.
    (2013). Gata4 is required for formation of the genital ridge in mice. PLoS Genet. 9, e1003629. doi:10.1371/journal.pgen.1003629
    OpenUrlCrossRefPubMed
    1. Huang, Z.,
    2. Dore, L. C.,
    3. Li, Z.,
    4. Orkin, S. H.,
    5. Feng, G.,
    6. Lin, S. and
    7. Crispino, J. D.
    (2009). GATA-2 reinforces megakaryocyte development in the absence of GATA-1. Mol. Cell Biol. 29, 5168-5180. doi:10.1128/MCB.00482-09
    OpenUrlAbstract/FREE Full Text
  83. ↵
    1. Huang, P.,
    2. He, Z.,
    3. Ji, S.,
    4. Sun, H.,
    5. Xiang, D.,
    6. Liu, C.,
    7. Hu, Y.,
    8. Wang, X. and
    9. Hui, L.
    (2011). Induction of functional hepatocyte-like cells from mouse fibroblasts by defined factors. Nature 475, 386-389. doi:10.1038/nature10116
    OpenUrlCrossRefPubMedWeb of Science
  84. ↵
    1. Huang, J.,
    2. Liu, X.,
    3. Li, D.,
    4. Shao, Z.,
    5. Cao, H.,
    6. Zhang, Y.,
    7. Trompouki, E.,
    8. Bowman, T. V.,
    9. Zon, L. I.,
    10. Yuan, G.-C. et al.
    (2016). Dynamic control of enhancer repertoires drives lineage and stage-specific transcription during hematopoiesis. Dev. Cell 36, 9-23. doi:10.1016/j.devcel.2015.12.014
    OpenUrlCrossRefPubMed
  85. ↵
    1. Ikonomi, P.,
    2. Rivera, C. E.,
    3. Riordan, M.,
    4. Washington, G.,
    5. Schechter, A. N. and
    6. Noguchi, C. T.
    (2000). Overexpression of GATA-2 inhibits erythroid and promotes megakaryocyte differentiation. Exp. Hematol. 28, 1423-1431. doi:10.1016/S0301-472X(00)00553-1
    OpenUrlCrossRefPubMedWeb of Science
  86. ↵
    1. Im, H.,
    2. Grass, J. A.,
    3. Johnson, K. D.,
    4. Kim, S.-I.,
    5. Boyer, M. E.,
    6. Imbalzano, A. N.,
    7. Bieker, J. J. and
    8. Bresnick, E. H.
    (2005). Chromatin domain activation via GATA-1 utilization of a small subset of dispersed GATA motifs within a broad chromosomal region. Proc. Natl. Acad. Sci. USA 102, 17065-17070. doi:10.1073/pnas.0506164102
    OpenUrlAbstract/FREE Full Text
  87. ↵
    1. Ivanovs, A.,
    2. Rybtsov, S.,
    3. Ng, E. S.,
    4. Stanley, E. G.,
    5. Elefanty, A. G. and
    6. Medvinsky, A.
    (2017). Human haematopoietic stem cell development: from the embryo to the dish. Development 144, 2323-2337. doi:10.1242/dev.134866
    OpenUrlAbstract/FREE Full Text
    1. Jager, P.,
    2. Ye, Z.,
    3. Yu, X.,
    4. Zagoraiou, L.,
    5. Prekop, H.-T.,
    6. Partanen, J.,
    7. Jessell, T. M.,
    8. Wisden, W.,
    9. Brickley, S. G. and
    10. Delogu, A.
    (2016). Tectal-derived interneurons contribute to phasic and tonic inhibition in the visual thalamus. Nat. Commun. 7, 13579. doi:10.1038/ncomms13579
    OpenUrlCrossRefPubMed
  88. ↵
    1. Jay, P. Y.,
    2. Bielinska, M.,
    3. Erlich, J. M.,
    4. Mannisto, S.,
    5. Pu, W. T.,
    6. Heikinheimo, M. and
    7. Wilson, D. B.
    (2007). Impaired mesenchymal cell function in Gata4 mutant mice leads to diaphragmatic hernias and primary lung defects. Dev. Biol. 301, 602-614. doi:10.1016/j.ydbio.2006.09.050
    OpenUrlCrossRefPubMedWeb of Science
  89. ↵
    1. Jeong, J.-W.,
    2. Lee, K. Y.,
    3. Kwak, I.,
    4. White, L. D.,
    5. Hilsenbeck, S. G.,
    6. Lydon, J. P. and
    7. DeMayo, F. J.
    (2005). Identification of murine uterine genes regulated in a ligand-dependent manner by the progesterone receptor. Endocrinology 146, 3490-3505. doi:10.1210/en.2005-0016
    OpenUrlCrossRefPubMedWeb of Science
  90. ↵
    1. Jing, H.,
    2. Vakoc, C. R.,
    3. Ying, L.,
    4. Mandat, S.,
    5. Wang, H.,
    6. Zheng, X. and
    7. Blobel, G. A.
    (2008). Exchange of GATA factors mediates transitions in looped chromatin organization at a developmentally regulated gene locus. Mol. Cell 29, 232-242. doi:10.1016/j.molcel.2007.11.020
    OpenUrlCrossRefPubMedWeb of Science
  91. ↵
    1. Joshi, K.,
    2. Lee, S.,
    3. Lee, B.,
    4. Lee, J. W. and
    5. Lee, S.-K.
    (2009). LMO4 controls the balance between excitatory and inhibitory spinal V2 interneurons. Neuron 61, 839-851. doi:10.1016/j.neuron.2009.02.011
    OpenUrlCrossRefPubMedWeb of Science
    1. Kaimakis, P.,
    2. de Pater, E.,
    3. Eich, C.,
    4. Solaimani Kartalaei, P.,
    5. Kauts, M.-L.,
    6. Vink, C. S.,
    7. van der Linden, R.,
    8. Jaegle, M.,
    9. Yokomizo, T.,
    10. Meijer, D., et al.
    (2016). Functional and molecular characterization of mouse Gata2-independent hematopoietic progenitors. Blood 127, 1426-1437. doi:10.1182/blood-2015-10-673749
    OpenUrlAbstract/FREE Full Text
  92. ↵
    1. Kakita, T.,
    2. Hasegawa, K.,
    3. Morimoto, T.,
    4. Kaburagi, S.,
    5. Wada, H. and
    6. Sasayama, S.
    (1999). p300 protein as a coactivator of GATA-5 in the transcription of cardiac-restricted atrial natriuretic factor gene. J. Biol. Chem. 274, 34096-34102. doi:10.1074/jbc.274.48.34096
    OpenUrlAbstract/FREE Full Text
  93. ↵
    1. Kala, K.,
    2. Haugas, M.,
    3. Lillevali, K.,
    4. Guimera, J.,
    5. Wurst, W.,
    6. Salminen, M. and
    7. Partanen, J.
    (2009). Gata2 is a tissue-specific post-mitotic selector gene for midbrain GABAergic neurons. Development 136, 253-262. doi:10.1242/dev.029900
    OpenUrlAbstract/FREE Full Text
  94. ↵
    1. Kamata, M.,
    2. Okitsu, Y.,
    3. Fujiwara, T.,
    4. Kanehira, M.,
    5. Nakajima, S.,
    6. Takahashi, T.,
    7. Inoue, A.,
    8. Fukuhara, N.,
    9. Onishi, Y.,
    10. Ishizawa, K. et al.
    (2014). GATA2 regulates differentiation of bone marrow-derived mesenchymal stem cells. Haematologica 99, 1686-1696. doi:10.3324/haematol.2014.105692
    OpenUrlAbstract/FREE Full Text
    1. Kaneko, H.,
    2. Kobayashi, E.,
    3. Yamamoto, M. and
    4. Shimizu, R.
    (2012). N- and C-terminal transactivation domains of GATA1 protein coordinate hematopoietic program. J. Biol. Chem. 287, 21439-21449. doi:10.1074/jbc.M112.370437
    OpenUrlAbstract/FREE Full Text
    1. Kanhere, A.,
    2. Hertweck, A.,
    3. Bhatia, U.,
    4. Gökmen, M. R.,
    5. Perucha, E.,
    6. Jackson, I.,
    7. Lord, G. M. and
    8. Jenner, R. G.
    (2012). T-bet and GATA3 orchestrate Th1 and Th2 differentiation through lineage-specific targeting of distal regulatory elements. Nat. Commun. 3, 1268. doi:10.1038/ncomms2260
    OpenUrlCrossRefPubMed
  95. ↵
    1. Kanki, Y.,
    2. Nakaki, R.,
    3. Shimamura, T.,
    4. Matsunaga, T.,
    5. Yamamizu, K.,
    6. Katayama, S.,
    7. Suehiro, J.-I.,
    8. Osawa, T.,
    9. Aburatani, H.,
    10. Kodama, T. et al.
    (2017). Dynamically and epigenetically coordinated GATA/ETS/SOX transcription factor expression is indispensable for endothelial cell differentiation. Nucleic Acids Res. 45, 4344-4358. doi:10.1093/nar/gkx159
    OpenUrlCrossRef
  96. ↵
    1. Karis, A.,
    2. Pata, I.,
    3. van Doorninck, J. H.,
    4. Grosveld, F.,
    5. de Zeeuw, C. I.,
    6. de Caprona, D. and
    7. Fritzsch, B.
    (2001). Transcription factor GATA-3 alters pathway selection of olivocochlear neurons and affects morphogenesis of the ear. J. Comp. Neurol. 429, 615-630. doi:10.1002/1096-9861(20010122)429:4<615::AID-CNE8>3.0.CO;2-F
    OpenUrlCrossRefPubMedWeb of Science
  97. ↵
    1. Kassab, K.,
    2. Hariri, H.,
    3. Gharibeh, L.,
    4. Fahed, A. C.,
    5. Zein, M.,
    6. El-Rassy, I.,
    7. Nemer, M.,
    8. El-Rassi, I.,
    9. Bitar, F. and
    10. Nemer, G.
    (2016). GATA5 mutation homozygosity linked to a double outlet right ventricle phenotype in a Lebanese patient. Mol. Genet. Genomic Med. 4, 160-171. doi:10.1002/mgg3.190
    OpenUrlCrossRef
  98. ↵
    1. Katsumoto, T.,
    2. Kimura, M.,
    3. Yamashita, M.,
    4. Hosokawa, H.,
    5. Hashimoto, K.,
    6. Hasegawa, A.,
    7. Omori, M.,
    8. Miyamoto, T.,
    9. Taniguchi, M. and
    10. Nakayama, T.
    (2004). STAT6-dependent differentiation and production of IL-5 and IL-13 in murine NK2 cells. J. Immunol. 173, 4967-4975. doi:10.4049/jimmunol.173.8.4967
    OpenUrlAbstract/FREE Full Text
  99. ↵
    1. Kaufman, C. K.,
    2. Zhou, P.,
    3. Pasolli, H. A.,
    4. Rendl, M.,
    5. Bolotin, D.,
    6. Lim, K. C.,
    7. Dai, X.,
    8. Alegre, M. L. and
    9. Fuchs, E.
    (2003). GATA-3: an unexpected regulator of cell lineage determination in skin. Genes Dev. 17, 2108-2122. doi:10.1101/gad.1115203
    OpenUrlAbstract/FREE Full Text
  100. ↵
    1. Kazenwadel, J.,
    2. Betterman, K. L.,
    3. Chong, C.-E.,
    4. Stokes, P. H.,
    5. Lee, Y. K.,
    6. Secker, G. A.,
    7. Agalarov, Y.,
    8. Demir, C. S.,
    9. Lawrence, D. M.,
    10. Sutton, D. L. et al.
    (2015). GATA2 is required for lymphatic vessel valve development and maintenance. J. Clin. Invest. 125, 2979-2994. doi:10.1172/JCI78888
    OpenUrlCrossRefPubMed
    1. Khalid, A. B.,
    2. Slayden, A. V.,
    3. Kumpati, J.,
    4. Perry, C. D.,
    5. Osuna, M. A. L.,
    6. Arroyo, S. R.,
    7. Miranda-Carboni, G. A. and
    8. Krum, S. A.
    (2018). GATA4 directly regulates Runx2 expression and osteoblast differentiation. JBMR Plus 2, 81-91. doi:10.1002/jbm4.10027
    OpenUrlCrossRef
  101. ↵
    1. Kiiveri, S.,
    2. Liu, J.,
    3. Westerholm-Ormio, M.,
    4. Narita, N.,
    5. Wilson, D. B.,
    6. Voutilainen, R. and
    7. Heikinheimo, M.
    (2002). Transcription factors GATA-4 and GATA-6 during mouse and human adrenocortical development. Endocr. Res. 28, 647-650. doi:10.1081/ERC-120016980
    OpenUrlCrossRefPubMedWeb of Science
  102. ↵
    1. Kim, S.-I.,
    2. Bultman, S. J.,
    3. Kiefer, C. M.,
    4. Dean, A. and
    5. Bresnick, E. H.
    (2009). BRG1 requirement for long-range interaction of a locus control region with a downstream promoter. Proc. Natl. Acad. Sci. USA 106, 2259-2264. doi:10.1073/pnas.0806420106
    OpenUrlAbstract/FREE Full Text
    1. Kitajima, K.,
    2. Tanaka, M.,
    3. Zheng, J.,
    4. Yen, H.,
    5. Sato, A.,
    6. Sugiyama, D.,
    7. Umehara, H.,
    8. Sakai, E. and
    9. Nakano, T.
    (2006). Redirecting differentiation of hematopoietic progenitors by a transcription factor, GATA-2. Blood 107, 1857-1863. doi:10.1182/blood-2005-06-2527
    OpenUrlAbstract/FREE Full Text
  103. ↵
    1. Kodo, K.,
    2. Nishizawa, T.,
    3. Furutani, M.,
    4. Arai, S.,
    5. Yamamura, E.,
    6. Joo, K.,
    7. Takahashi, T.,
    8. Matsuoka, R. and
    9. Yamagishi, H.
    (2009). GATA6 mutations cause human cardiac outflow tract defects by disrupting semaphorin-plexin signaling. Proc. Natl. Acad. Sci. USA 106, 13933-13938. doi:10.1073/pnas.0904744106
    OpenUrlAbstract/FREE Full Text
    1. Kohlnhofer, B. M.,
    2. Thompson, C. A.,
    3. Walker, E. M. and
    4. Battle, M. A.
    (2016). GATA4 regulates epithelial cell proliferation to control intestinal growth and development in mice. Cell. Mol. Gastroenterol. Hepatol. 2, 189-209. doi:10.1016/j.jcmgh.2015.11.010
    OpenUrlCrossRef
  104. ↵
    1. Kong, S. L.,
    2. Li, G.,
    3. Loh, S. L.,
    4. Sung, W.-K. and
    5. Liu, E. T.
    (2011). Cellular reprogramming by the conjoint action of ERalpha, FOXA1, and GATA3 to a ligand-inducible growth state. Mol. Syst. Biol. 7, 526. doi:10.1038/msb.2011.59
    OpenUrlAbstract/FREE Full Text
  105. ↵
    1. Kouros-Mehr, H.,
    2. Slorach, E. M.,
    3. Sternlicht, M. D. and
    4. Werb, Z.
    (2006). GATA-3 maintains the differentiation of the luminal cell fate in the mammary gland. Cell 127, 1041-1055. doi:10.1016/j.cell.2006.09.048
    OpenUrlCrossRefPubMedWeb of Science
  106. ↵
    1. Kouros-Mehr, H.,
    2. Kim, J.-W.,
    3. Bechis, S. K. and
    4. Werb, Z.
    (2008). GATA-3 and the regulation of the mammary luminal cell fate. Curr. Opin. Cell Biol. 20, 164-170. doi:10.1016/j.ceb.2008.02.003
    OpenUrlCrossRefPubMed
  107. ↵
    1. Koutsourakis, M.,
    2. Langeveld, A.,
    3. Patient, R.,
    4. Beddington, R. and
    5. Grosveld, F.
    (1999). The transcription factor GATA6 is essential for early extraembryonic development. Development 126, 723-732.
    OpenUrlAbstract/FREE Full Text
  108. ↵
    1. Koutsourakis, M.,
    2. Keijzer, R.,
    3. Visser, P.,
    4. Post, M.,
    5. Tibboel, D. and
    6. Grosveld, F.
    (2001). Branching and differentiation defects in pulmonary epithelium with elevated Gata6 expression. Mech. Dev. 105, 105-114. doi:10.1016/S0925-4773(01)00386-0
    OpenUrlCrossRefPubMedWeb of Science
    1. Kozhemyakina, E.,
    2. Ionescu, A. and
    3. Lassar, A. B.
    (2014). GATA6 is a crucial regulator of Shh in the limb bud. PLoS Genet. 10, e1004072. doi:10.1371/journal.pgen.1004072
    OpenUrlCrossRefPubMed
  109. ↵
    1. Krivega, I.,
    2. Dale, R. K. and
    3. Dean, A.
    (2014). Role of LDB1 in the transition from chromatin looping to transcription activation. Genes Dev. 28, 1278-1290. doi:10.1101/gad.239749.114
    OpenUrlAbstract/FREE Full Text
  110. ↵
    1. Ku, C.-J.,
    2. Hosoya, T.,
    3. Maillard, I. and
    4. Engel, J. D.
    (2012). GATA-3 regulates hematopoietic stem cell maintenance and cell-cycle entry. Blood 119, 2242-2251. doi:10.1182/blood-2011-07-366070
    OpenUrlAbstract/FREE Full Text
  111. ↵
    1. Kuo, C. T.,
    2. Morrisey, E. E.,
    3. Anandappa, R.,
    4. Sigrist, K.,
    5. Lu, M. M.,
    6. Parmacek, M. S.,
    7. Soudais, C. and
    8. Leiden, J. M.
    (1997). GATA4 transcription factor is required for ventral morphogenesis and heart tube formation. Genes Dev. 11, 1048-1060. doi:10.1101/gad.11.8.1048
    OpenUrlAbstract/FREE Full Text
  112. ↵
    1. Kurek, D.,
    2. Garinis, G. A.,
    3. van Doorninck, J. H.,
    4. van der Wees, J. and
    5. Grosveld, F. G.
    (2007). Transcriptome and phenotypic analysis reveals Gata3-dependent signalling pathways in murine hair follicles. Development 134, 261-272. doi:10.1242/dev.02721
    OpenUrlAbstract/FREE Full Text
  113. ↵
    1. Kyrönlahti, A.,
    2. Vetter, M.,
    3. Euler, R.,
    4. Bielinska, M.,
    5. Jay, P. Y.,
    6. Anttonen, M.,
    7. Heikinheimo, M. and
    8. Wilson, D. B.
    (2011). GATA4 deficiency impairs ovarian function in adult mice. Biol. Reprod. 84, 1033-1044. doi:10.1095/biolreprod.110.086850
    OpenUrlAbstract/FREE Full Text
  114. ↵
    1. Laforest, B. and
    2. Nemer, M.
    (2011). GATA5 interacts with GATA4 and GATA6 in outflow tract development. Dev. Biol. 358, 368-378. doi:10.1016/j.ydbio.2011.07.037
    OpenUrlCrossRefPubMed
  115. ↵
    1. Lahti, L.,
    2. Haugas, M.,
    3. Tikker, L.,
    4. Airavaara, M.,
    5. Voutilainen, M. H.,
    6. Anttila, J.,
    7. Kumar, S.,
    8. Inkinen, C.,
    9. Salminen, M. and
    10. Partanen, J.
    (2016). Differentiation and molecular heterogeneity of inhibitory and excitatory neurons associated with midbrain dopaminergic nuclei. Development 143, 516-529. doi:10.1242/dev.129957
    OpenUrlAbstract/FREE Full Text
  116. ↵
    1. Laiosa, C. V.,
    2. Stadtfeld, M.,
    3. Xie, H.,
    4. de Andres-Aguayo, L. and
    5. Graf, T.
    (2006). Reprogramming of committed T cell progenitors to macrophages and dendritic cells by C/EBP alpha and PU.1 transcription factors. Immunity 25, 731-744. doi:10.1016/j.immuni.2006.09.011
    OpenUrlCrossRefPubMedWeb of Science
  117. ↵
    1. Lamonica, J. M.,
    2. Deng, W.,
    3. Kadauke, S.,
    4. Campbell, A. E.,
    5. Gamsjaeger, R.,
    6. Wang, H.,
    7. Cheng, Y.,
    8. Billin, A. N.,
    9. Hardison, R. C.,
    10. Mackay, J. P. et al.
    (2011). Bromodomain protein Brd3 associates with acetylated GATA1 to promote its chromatin occupancy at erythroid target genes. Proc. Natl. Acad. Sci. USA 108, E159-E168. doi:10.1073/pnas.1102140108
    OpenUrlAbstract/FREE Full Text
  118. ↵
    1. Lee, M. E.,
    2. Temizer, D. H.,
    3. Clifford, J. A. and
    4. Quertermous, T.
    (1991). Cloning of the GATA-binding protein that regulates endothelin-1 gene expression in endothelial cells. J. Biol. Chem. 266, 16188-16192.
    OpenUrlAbstract/FREE Full Text
  119. ↵
    1. Lepore, J. J.,
    2. Mericko, P. A.,
    3. Cheng, L.,
    4. Lu, M. M.,
    5. Morrisey, E. E. and
    6. Parmacek, M. S.
    (2006). GATA-6 regulates semaphorin 3C and is required in cardiac neural crest for cardiovascular morphogenesis. J. Clin. Investig. 116, 929-939. doi:10.1172/JCI27363
    OpenUrlCrossRefPubMedWeb of Science
  120. ↵
    1. Lescroart, F.,
    2. Wang, X.,
    3. Lin, X.,
    4. Swedlund, B.,
    5. Gargouri, S.,
    6. Sanchez-Danes, A.,
    7. Moignard, V.,
    8. Dubois, C.,
    9. Paulissen, C.,
    10. Kinston, S. et al.
    (2018). Defining the earliest step of cardiovascular lineage segregation by single-cell RNA-seq. Science 359, 1177-1181. doi:10.1126/science.aao4174
    OpenUrlAbstract/FREE Full Text
    1. Li, Y.,
    2. Qi, X.,
    3. Liu, B. and
    4. Huang, H.
    (2015). The STAT5-GATA2 pathway is critical in basophil and mast cell differentiation and maintenance. J. Immunol. 194, 4328-4338. doi:10.4049/jimmunol.1500018
    OpenUrlAbstract/FREE Full Text
  121. ↵
    1. Li, X.,
    2. Huynh, H. D.,
    3. Zuo, H.,
    4. Salminen, M. and
    5. Wan, Y.
    (2016). Gata2 is a rheostat for mesenchymal stem cell fate in male mice. Endocrinology 157, 1021-1028. doi:10.1210/en.2015-1827
    OpenUrlCrossRef
  122. ↵
    1. Lilleväli, K.,
    2. Matilainen, T.,
    3. Karis, A. and
    4. Salminen, M.
    (2004). Partially overlapping expression of Gata2 and Gata3 during inner ear development. Dev. Dyn. 231, 775-781. doi:10.1002/dvdy.20185
    OpenUrlCrossRefPubMedWeb of Science
  123. ↵
    1. Lilleväli, K.,
    2. Haugas, M.,
    3. Matilainen, T.,
    4. Pussinen, C.,
    5. Karis, A. and
    6. Salminen, M.
    (2006). Gata3 is required for early morphogenesis and Fgf10 expression during otic development. Mech. Dev. 123, 415-429. doi:10.1016/j.mod.2006.04.007
    OpenUrlCrossRefPubMed
  124. ↵
    1. Lim, K.-C.,
    2. Lakshmanan, G.,
    3. Crawford, S. E.,
    4. Gu, Y.,
    5. Grosveld, F. and
    6. Engel, J. D.
    (2000). Gata3 loss leads to embryonic lethality due to noradrenaline deficiency of the sympathetic nervous system. Nat. Genet. 25, 209-212. doi:10.1038/76080
    OpenUrlCrossRefPubMedWeb of Science
  125. ↵
    1. Lim, K.-C.,
    2. Hosoya, T.,
    3. Brandt, W.,
    4. Ku, C.-J.,
    5. Hosoya-Ohmura, S.,
    6. Camper, S. A.,
    7. Yamamoto, M. and
    8. Engel, J. D.
    (2012). Conditional Gata2 inactivation results in HSC loss and lymphatic mispatterning. J. Clin. Invest. 122, 3705-3717. doi:10.1172/JCI61619
    OpenUrlCrossRefPubMedWeb of Science
    1. Lindeboom, F.,
    2. Gillemans, N.,
    3. Karis, A.,
    4. Jaegle, M.,
    5. Meijer, D.,
    6. Grosveld, F. and
    7. Philipsen, S.
    (2003). A tissue-specific knockout reveals that Gata1 is not essential for Sertoli cell function in the mouse. Nucleic Acids Res. 31, 5405-5412. doi:10.1093/nar/gkg723
    OpenUrlCrossRefPubMedWeb of Science
  126. ↵
    1. Ling, K.-W.,
    2. Ottersbach, K.,
    3. van Hamburg, J. P.,
    4. Oziemlak, A.,
    5. Tsai, F.-Y.,
    6. Orkin, S. H.,
    7. Ploemacher, R.,
    8. Hendriks, R. W. and
    9. Dzierzak, E.
    (2004). GATA-2 plays two functionally distinct roles during the ontogeny of hematopoietic stem cells. J. Exp. Med. 200, 871-882. doi:10.1084/jem.20031556
    OpenUrlAbstract/FREE Full Text
    1. Liu, C.,
    2. Maejima, T.,
    3. Wyler, S. C.,
    4. Casadesus, G.,
    5. Herlitze, S. and
    6. Deneris, E. S.
    (2010). Pet-1 is required across different stages of life to regulate serotonergic function. Nat. Neurosci. 13, 1190-1198. doi:10.1038/nn.2623
    OpenUrlCrossRefPubMedWeb of Science
  127. ↵
    1. Lourenco, D.,
    2. Brauner, R.,
    3. Rybczynska, M.,
    4. Nihoul-Fekete, C.,
    5. McElreavey, K. and
    6. Bashamboo, A.
    (2011). Loss-of-function mutation in GATA4 causes anomalies of human testicular development. Proc. Natl Acad. Sci. USA 108, 1597-1602. doi:10.1073/pnas.1010257108
    OpenUrlAbstract/FREE Full Text
  128. ↵
    1. Love, P. E.,
    2. Warzecha, C. and
    3. Li, L. Q.
    (2014). Ldb1 complexes: the new master regulators of erythroid gene transcription. Trends Genet. 30, 1-9. doi:10.1016/j.tig.2013.10.001
    OpenUrlCrossRefPubMedWeb of Science
  129. ↵
    1. Lowry, J. A. and
    2. Mackay, J. P.
    (2006). GATA-1: one protein, many partners. Int. J. Biochem. Cell Biol. 38, 6-11. doi:10.1016/j.biocel.2005.06.017
    OpenUrlCrossRefPubMed
    1. Luo, X.-J.,
    2. Deng, M.,
    3. Xie, X.,
    4. Huang, L.,
    5. Wang, H.,
    6. Jiang, L.,
    7. Liang, G.,
    8. Hu, F.,
    9. Tieu, R.,
    10. Chen, R., et al.
    (2013). GATA3 controls the specification of prosensory domain and neuronal survival in the mouse cochlea. Hum. Mol. Genet. 22, 3609-3623. doi:10.1093/hmg/ddt212
    OpenUrlCrossRefPubMedWeb of Science
    1. Ma, Q.,
    2. Zhou, B. and
    3. Pu, W. T.
    (2008). Reassessment of Isl1 and Nkx2-5 cardiac fate maps using a Gata4-based reporter of Cre activity. Dev. Biol. 323, 98-104. doi:10.1016/j.ydbio.2008.08.013
    OpenUrlCrossRefPubMedWeb of Science
  130. ↵
    1. Maeda, A.,
    2. Moriguchi, T.,
    3. Hamada, M.,
    4. Kusakabe, M.,
    5. Fujioka, Y.,
    6. Nakano, T.,
    7. Yoh, K.,
    8. Lim, K.-C.,
    9. Engel, J. D. and
    10. Takahashi, S.
    (2009). Transcription factor GATA-3 is essential for lens development. Dev. Dyn. 238, 2280-2291. doi:10.1002/dvdy.22035
    OpenUrlCrossRefPubMed
  131. ↵
    1. Magklara, A. and
    2. Smith, C. L.
    (2009). A composite intronic element directs dynamic binding of the progesterone receptor and GATA-2. Mol. Endocrinol. 23, 61-73. doi:10.1210/me.2008-0028
    OpenUrlCrossRefPubMedWeb of Science
    1. Mahmoud, M. M.,
    2. Kim, H. R.,
    3. Xing, R.,
    4. Hsiao, S.,
    5. Mammoto, A.,
    6. Chen, J.,
    7. Serbanovic-Canic, J.,
    8. Feng, S.,
    9. Bowden, N. P.,
    10. Maguire, R., et al.
    (2016). TWIST1 integrates endothelial responses to flow in vascular dysfunction and atherosclerosis. Circ. Res. 119, 450-462. doi:10.1161/CIRCRESAHA.116.308870
    OpenUrlAbstract/FREE Full Text
    1. Malek Mohammadi, M.,
    2. Kattih, B.,
    3. Grund, A.,
    4. Froese, N.,
    5. Korf-Klingebiel, M.,
    6. Gigina, A.,
    7. Schrameck, U.,
    8. Rudat, C.,
    9. Liang, Q.,
    10. Kispert, A., et al.
    (2017). The transcription factor GATA4 promotes myocardial regeneration in neonatal mice. EMBO Mol. Med. 9, 265-279. doi:10.15252/emmm.201606602
    OpenUrlAbstract/FREE Full Text
    1. Mancini, E.,
    2. Sanjuan-Pla, A.,
    3. Luciani, L.,
    4. Moore, S.,
    5. Grover, A.,
    6. Zay, A.,
    7. Rasmussen, K. D.,
    8. Luc, S.,
    9. Bilbao, D.,
    10. O'Carroll, D., et al.
    (2012). FOG-1 and GATA-1 act sequentially to specify definitive megakaryocytic and erythroid progenitors. EMBO J. 31, 351-365. doi:10.1038/emboj.2011.390
    OpenUrlCrossRefPubMedWeb of Science
  132. ↵
    1. Manuylov, N. L.,
    2. Smagulova, F. O.,
    3. Leach, L. and
    4. Tevosian, S. G.
    (2008). Ovarian development in mice requires the GATA4-FOG2 transcription complex. Development 135, 3731-3743. doi:10.1242/dev.024653
    OpenUrlAbstract/FREE Full Text
  133. ↵
    1. Manuylov, N. L.,
    2. Zhou, B.,
    3. Ma, Q.,
    4. Fox, S. C.,
    5. Pu, W. T. and
    6. Tevosian, S. G.
    (2011). Conditional ablation of Gata4 and Fog2 genes in mice reveals their distinct roles in mammalian sexual differentiation. Dev. Biol. 353, 229-241. doi:10.1016/j.ydbio.2011.02.032
    OpenUrlCrossRefPubMed
  134. ↵
    1. Martin, D. I. and
    2. Orkin, S. H.
    (1990). Transcriptional activation and DNA binding by the erythroid factor GF-1/NF-E1/Eryf 1. Genes Dev. 4, 1886-1898. doi:10.1101/gad.4.11.1886
    OpenUrlAbstract/FREE Full Text
    1. Martinelli, P.,
    2. Cañamero, M.,
    3. del Pozo, N.,
    4. Madriles, F.,
    5. Zapata, A. and
    6. Real, F. X.
    (2013). Gata6 is required for complete acinar differentiation and maintenance of the exocrine pancreas in adult mice. Gut 62, 1481-1488. doi:10.1136/gutjnl-2012-303328
    OpenUrlAbstract/FREE Full Text
  135. ↵
    1. Martowicz, M. L.,
    2. Grass, J. A.,
    3. Boyer, M. E.,
    4. Guend, H. and
    5. Bresnick, E. H.
    (2005). Dynamic GATA factor interplay at a multicomponent regulatory region of the GATA-2 locus. J. Biol. Chem. 280, 1724-1732. doi:10.1074/jbc.M406038200
    OpenUrlAbstract/FREE Full Text
  136. ↵
    1. Masse, I.,
    2. Barbollat-Boutrand, L.,
    3. Kharbili, M. E.,
    4. Berthier-Vergnes, O.,
    5. Aubert, D. and
    6. Lamartine, J.
    (2014). GATA3 inhibits proliferation and induces expression of both early and late differentiation markers in keratinocytes of the human epidermis. Arch. Dermatol. Res. 306, 201-208. doi:10.1007/s00403-013-1435-5
    OpenUrlCrossRef
  137. ↵
    1. Meier, N.,
    2. Krpic, S.,
    3. Rodriguez, P.,
    4. Strouboulis, J.,
    5. Monti, M.,
    6. Krijgsveld, J.,
    7. Gering, M.,
    8. Patient, R.,
    9. Hostert, A. and
    10. Grosveld, F.
    (2006). Novel binding partners of Ldb1 are required for haematopoietic development. Development 133, 4913-4923. doi:10.1242/dev.02656
    OpenUrlAbstract/FREE Full Text
    1. Meinders, M.,
    2. Hoogenboezem, M.,
    3. Scheenstra, M. R.,
    4. De Cuyper, I. M.,
    5. Papadopoulos, P.,
    6. Németh, T.,
    7. Mócsai, A.,
    8. van den Berg, T. K.,
    9. Kuijpers, T. W. and
    10. Gutiérrez, L.
    (2016). Repercussion of megakaryocyte-specific Gata1 loss on megakaryopoiesis and the hematopoietic precursor compartment. PLoS ONE 11, e0154342. doi:10.1371/journal.pone.0154342
    OpenUrlCrossRef
    1. Messaoudi, S.,
    2. He, Y.,
    3. Gutsol, A.,
    4. Wight, A.,
    5. Hébert, R. L.,
    6. Vilmundarson, R. O.,
    7. Makrigiannis, A. P.,
    8. Chalmers, J.,
    9. Hamet, P.,
    10. Tremblay, J., et al.
    (2015). Endothelial Gata5 transcription factor regulates blood pressure. Nat. Commun. 6, 8835. doi:10.1038/ncomms9835
    OpenUrlCrossRef
  138. ↵
    1. Molkentin, J. D.
    (2000). The zinc finger-containing transcription factors GATA-4, -5, and -6. Ubiquitously expressed regulators of tissue-specific gene expression. J. Biol. Chem. 275, 38949-38952. doi:10.1074/jbc.R000029200
    OpenUrlFREE Full Text
  139. ↵
    1. Molkentin, J. D.,
    2. Lin, Q.,
    3. Duncan, S. A. and
    4. Olson, E. N.
    (1997). Requirement of the transcription factor GATA4 for heart tube formation and ventral morphogenesis. Genes Dev. 11, 1061-1072. doi:10.1101/gad.11.8.1061
    OpenUrlAbstract/FREE Full Text
  140. ↵
    1. Molkentin, J. D.,
    2. Lu, J.-R.,
    3. Antos, C. L.,
    4. Markham, B.,
    5. Richardson, J.,
    6. Robbins, J.,
    7. Grant, S. R. and
    8. Olson, E. N.
    (1998). A calcineurin-dependent transcriptional pathway for cardiac hypertrophy. Cell 93, 215-228. doi:10.1016/S0092-8674(00)81573-1
    OpenUrlCrossRefPubMedWeb of Science
  141. ↵
    1. Molkentin, J. D.,
    2. Tymitz, K. M.,
    3. Richardson, J. A. and
    4. Olson, E. N.
    (2000). Abnormalities of the genitourinary tract in female mice lacking GATA5. Mol. Cell. Biol. 20, 5256-5260. doi:10.1128/MCB.20.14.5256-5260.2000
    OpenUrlAbstract/FREE Full Text
    1. Moriguchi, T.,
    2. Takako, N.,
    3. Hamada, M.,
    4. Maeda, A.,
    5. Fujioka, Y.,
    6. Kuroha, T.,
    7. Huber, R. E.,
    8. Hasegawa, S. L.,
    9. Rao, A.,
    10. Yamamoto, M., et al.
    (2006). Gata3 participates in a complex transcriptional feedback network to regulate sympathoadrenal differentiation. Development 133, 3871-3881. doi:10.1242/dev.02553
    OpenUrlAbstract/FREE Full Text
  142. ↵
    1. Morin, S.,
    2. Charron, F.,
    3. Robitaille, L. and
    4. Nemer, M.
    (2000). GATA-dependent recruitment of MEF2 proteins to target promoters. EMBO J. 19, 2046-2055. doi:10.1093/emboj/19.9.2046
    OpenUrlAbstract/FREE Full Text
  143. ↵
    1. Morrisey, E. E.,
    2. Ip, H. S.,
    3. Tang, Z. and
    4. Parmacek, M. S.
    (1997). GATA-4 activates transcription via two novel domains that are conserved within the GATA-4/5/6 subfamily. J. Biol. Chem. 272, 8515-8524. doi:10.1074/jbc.272.13.8515
    OpenUrlAbstract/FREE Full Text
  144. ↵
    1. Morrisey, E. E.,
    2. Tang, Z.,
    3. Sigrist, K.,
    4. Lu, M. M.,
    5. Jiang, F.,
    6. Ip, H. S. and
    7. Parmacek, M. S.
    (1998). GATA6 regulates HNF4 and is required for differentiation of visceral endoderm in the mouse embryo. Genes Dev. 12, 3579-3590. doi:10.1101/gad.12.22.3579
    OpenUrlAbstract/FREE Full Text
  145. ↵
    1. Nandakumar, S. K.,
    2. Johnson, K.,
    3. Throm, S. L.,
    4. Pestina, T. I.,
    5. Neale, G. and
    6. Persons, D. A.
    (2015). Low-level GATA2 overexpression promotes myeloid progenitor self-renewal and blocks lymphoid differentiation in mice. Exp. Hematol. 43, 565-577.e561-510. doi:10.1016/j.exphem.2015.04.002
    OpenUrlCrossRefPubMed
  146. ↵
    1. Nardelli, J.,
    2. Thiesson, D.,
    3. Fujiwara, Y.,
    4. Tsai, F.-Y. and
    5. Orkin, S. H.
    (1999). Expression and genetic interaction of transcription factors GATA-2 and GATA-3 during development of the mouse central nervous system. Dev. Biol. 210, 305-321. doi:10.1006/dbio.1999.9278
    OpenUrlCrossRefPubMedWeb of Science
    1. Nguyen, A. H. T.,
    2. Tremblay, M.,
    3. Haigh, K.,
    4. Koumakpayi, I. H.,
    5. Paquet, M.,
    6. Pandolfi, P. P.,
    7. Mes-Masson, A.-M.,
    8. Saad, F.,
    9. Haigh, J. J. and
    10. Bouchard, M.
    (2013). Gata3 antagonizes cancer progression in Pten-deficient prostates. Hum. Mol. Genet. 22, 2400-2410. doi:10.1093/hmg/ddt088
    OpenUrlCrossRefPubMed
  147. ↵
    1. Nichols, K. E.,
    2. Crispino, J. D.,
    3. Poncz, M.,
    4. White, J. G.,
    5. Orkin, S. H.,
    6. Maris, J. M. and
    7. Weiss, M. J.
    (2000). Familial dyserythropoietic anaemia and thrombocytopenia due to an inherited mutation in GATA1. Nat. Genet. 24, 266-270. doi:10.1038/73480
    OpenUrlCrossRefPubMedWeb of Science
    1. Ohneda, K.,
    2. Moriguchi, T.,
    3. Ohmori, S.,
    4. Ishijima, Y.,
    5. Satoh, H.,
    6. Philipsen, S. and
    7. Yamamoto, M.
    (2014). Transcription factor GATA1 is dispensable for mast cell differentiation in adult mice. Mol. Cell. Biol. 34, 1812-1826. doi:10.1128/MCB.01524-13
    OpenUrlAbstract/FREE Full Text
    1. Oka, T.,
    2. Maillet, M.,
    3. Watt, A. J.,
    4. Schwartz, R. J.,
    5. Aronow, B. J.,
    6. Duncan, S. A. and
    7. Molkentin, J. D.
    (2006). Cardiac-specific deletion of Gata4 reveals its requirement for hypertrophy, compensation, and myocyte viability. Circ. Res. 98, 837-845. doi:10.1161/01.RES.0000215985.18538.c4
    OpenUrlAbstract/FREE Full Text
    1. Okabe, Y. and
    2. Medzhitov, R.
    (2014). Tissue-specific signals control reversible program of localization and functional polarization of macrophages. Cell 157, 832-844. doi:10.1016/j.cell.2014.04.016
    OpenUrlCrossRefPubMedWeb of Science
    1. Oliver, C. H.,
    2. Khaled, W. T.,
    3. Frend, H.,
    4. Nichols, J. and
    5. Watson, C. J.
    (2012). The Stat6-regulated KRAB domain zinc finger protein Zfp157 regulates the balance of lineages in mammary glands and compensates for loss of Gata-3. Genes Dev. 26, 1086-1097. doi:10.1101/gad.184051.111
    OpenUrlAbstract/FREE Full Text
  148. ↵
    1. Onodera, K.,
    2. Fujiwara, T.,
    3. Onishi, Y.,
    4. Itoh-Nakadai, A.,
    5. Okitsu, Y.,
    6. Fukuhara, N.,
    7. Ishizawa, K.,
    8. Shimizu, R.,
    9. Yamamoto, M. and
    10. Harigae, H.
    (2016). GATA2 regulates dendritic cell differentiation. Blood 128, 508-518. doi:10.1182/blood-2016-02-698118
    OpenUrlAbstract/FREE Full Text
  149. ↵
    1. Ostergaard, P.,
    2. Simpson, M. A.,
    3. Connell, F. C.,
    4. Steward, C. G.,
    5. Brice, G.,
    6. Woollard, W. J.,
    7. Dafou, D.,
    8. Kilo, T.,
    9. Smithson, S.,
    10. Lunt, P. et al.
    (2011). Mutations in GATA2 cause primary lymphedema associated with a predisposition to acute myeloid leukemia (Emberger syndrome). Nat. Genet. 43, 929-931. doi:10.1038/ng.923
    OpenUrlCrossRefPubMed
  150. ↵
    1. Ouyang, W.,
    2. Ranganath, S. H.,
    3. Weindel, K.,
    4. Bhattacharya, D.,
    5. Murphy, T. L.,
    6. Sha, W. C. and
    7. Murphy, K. M.
    (1998). Inhibition of Th1 development mediated by GATA-3 through an IL-4-independent mechanism. Immunity 9, 745-755. doi:10.1016/S1074-7613(00)80671-8
    OpenUrlCrossRefPubMedWeb of Science
  151. ↵
    1. Padua, M. B.,
    2. Fox, S. C.,
    3. Jiang, T.,
    4. Morse, D. A. and
    5. Tevosian, S. G.
    (2014). Simultaneous gene deletion of Gata4 and Gata6 leads to early disruption of follicular development and germ cell loss in the murine ovary. Biol. Reprod. 91, 24. doi:10.1095/biolreprod.113.117002
    OpenUrlAbstract/FREE Full Text
    1. Padua, M. B.,
    2. Jiang, T.,
    3. Morse, D. A.,
    4. Fox, S. C.,
    5. Hatch, H. M. and
    6. Tevosian, S. G.
    (2015). Combined loss of the GATA4 and GATA6 transcription factors in male mice disrupts testicular development and confers adrenal-like function in the testes. Endocrinology 156, 1873-1886. doi:10.1210/en.2014-1907
    OpenUrlCrossRefPubMed
  152. ↵
    1. Pai, S.-Y.,
    2. Truitt, M. L.,
    3. Ting, C.-N.,
    4. Leiden, J. M.,
    5. Glimcher, L. H. and
    6. Ho, I.-C.
    (2003). Critical roles for transcription factor GATA-3 in thymocyte development. Immunity 19, 863-875. doi:10.1016/S1074-7613(03)00328-5
    OpenUrlCrossRefPubMedWeb of Science
    1. Pai, S.-Y.,
    2. Truitt, M. L. and
    3. Ho, I.-C.
    (2004). GATA-3 deficiency abrogates the development and maintenance of T helper type 2 cells. Proc. Natl. Acad. Sci. USA 101, 1993-1998. doi:10.1073/pnas.0308697100
    OpenUrlAbstract/FREE Full Text
  153. ↵
    1. Partington, G. A. and
    2. Patient, R. K.
    (1999). Phosphorylation of GATA-1 increases its DNA-binding affinity and is correlated with induction of human K562 erythroleukaemia cells. Nucleic Acids Res. 27, 1168-1175. doi:10.1093/nar/27.4.1168
    OpenUrlCrossRefPubMedWeb of Science
  154. ↵
    1. Patankar, J. V.,
    2. Chandak, P. G.,
    3. Obrowsky, S.,
    4. Pfeifer, T.,
    5. Diwoky, C.,
    6. Uellen, A.,
    7. Sattler, W.,
    8. Stollberger, R.,
    9. Hoefler, G.,
    10. Heinemann, A. et al.
    (2011). Loss of intestinal GATA4 prevents diet-induced obesity and promotes insulin sensitivity in mice. Am. J. Physiol. Endocrinol. Metab. 300, E478-E488. doi:10.1152/ajpendo.00457.2010
    OpenUrlCrossRefPubMed
  155. ↵
    1. Persons, D. A.,
    2. Allay, J. A.,
    3. Allay, E. R.,
    4. Ashmun, R. A.,
    5. Orlic, D.,
    6. Jane, S. M.,
    7. Cunningham, J. M. and
    8. Nienhuis, A. W.
    (1999). Enforced expression of the GATA-2 transcription factor blocks normal hematopoiesis. Blood 93, 488-499.
    OpenUrlAbstract/FREE Full Text
  156. ↵
    1. Peterkin, T.,
    2. Gibson, A.,
    3. Loose, M. and
    4. Patient, R.
    (2005). The roles of GATA-4, -5 and -6 in vertebrate heart development. Semin. Cell Dev. Biol. 16, 83-94. doi:10.1016/j.semcdb.2004.10.003
    OpenUrlCrossRefPubMedWeb of Science
  157. ↵
    1. Pevny, L.,
    2. Lin, C. S.,
    3. D'Agati, V.,
    4. Simon, M. C.,
    5. Orkin, S. H. and
    6. Costantini, F.
    (1995). Development of hematopoietic cells lacking transcription factor GATA-1. Development 121, 163-172.
    OpenUrlAbstract
  158. ↵
    1. Pihlajoki, M.,
    2. Gretzinger, E.,
    3. Cochran, R.,
    4. Kyrönlahti, A.,
    5. Schrade, A.,
    6. Hiller, T.,
    7. Sullivan, L.,
    8. Shoykhet, M.,
    9. Schoeller, E. L.,
    10. Brooks, M. D. et al.
    (2013). Conditional mutagenesis of Gata6 in SF1-positive cells causes gonadal-like differentiation in the adrenal cortex of mice. Endocrinology 154, 1754-1767. doi:10.1210/en.2012-1892
    OpenUrlCrossRefPubMed
  159. ↵
    1. Pu, W. T.,
    2. Ishiwata, T.,
    3. Juraszek, A. L.,
    4. Ma, Q. and
    5. Izumo, S.
    (2004). GATA4 is a dosage-sensitive regulator of cardiac morphogenesis. Dev. Biol. 275, 235-244. doi:10.1016/j.ydbio.2004.08.008
    OpenUrlCrossRefPubMedWeb of Science
  160. ↵
    1. Raid, R.,
    2. Krinka, D.,
    3. Bakhoff, L.,
    4. Abdelwahid, E.,
    5. Jokinen, E.,
    6. Kärner, M.,
    7. Malva, M.,
    8. Meier, R.,
    9. Pelliniemi, L. J.,
    10. Ploom, M. et al.
    (2009). Lack of Gata3 results in conotruncal heart anomalies in mouse. Mech. Dev. 126, 80-89. doi:10.1016/j.mod.2008.10.001
    OpenUrlCrossRefPubMed
  161. ↵
    1. Ray, S.,
    2. Dutta, D.,
    3. Rumi, M. A. K.,
    4. Kent, L. N.,
    5. Soares, M. J. and
    6. Paul, S.
    (2009). Context-dependent function of regulatory elements and a switch in chromatin occupancy between GATA3 and GATA2 regulate Gata2 transcription during trophoblast differentiation. J. Biol. Chem. 284, 4978-4988. doi:10.1074/jbc.M807329200
    OpenUrlAbstract/FREE Full Text
  162. ↵
    1. Rivera-Feliciano, J.
    (2006). Development of heart valves requires Gata4 expression in endothelial-derived cells. Development 133, 3607-3618. doi:10.1242/dev.02519
    OpenUrlAbstract/FREE Full Text
  163. ↵
    1. Rodriguez, P.,
    2. Bonte, E.,
    3. Krijgsveld, J.,
    4. Kolodziej, K. E.,
    5. Guyot, B.,
    6. Heck, A. J. R.,
    7. Vyas, P.,
    8. de Boer, E.,
    9. Grosveld, F. and
    10. Strouboulis, J.
    (2005). GATA-1 forms distinct activating and repressive complexes in erythroid cells. EMBO J. 24, 2354-2366. doi:10.1038/sj.emboj.7600702
    OpenUrlAbstract/FREE Full Text
    1. Rojas, A.,
    2. Kong, S. W.,
    3. Agarwal, P.,
    4. Gilliss, B.,
    5. Pu, W. T. and
    6. Black, B. L.
    (2008). GATA4 is a direct transcriptional activator of cyclin D2 and Cdk4 and is required for cardiomyocyte proliferation in anterior heart field-derived myocardium. Mol. Cell. Biol. 28, 5420-5431. doi:10.1128/MCB.00717-08
    OpenUrlAbstract/FREE Full Text
  164. ↵
    1. Rubel, C. A.,
    2. Franco, H. L.,
    3. Jeong, J.-W.,
    4. Lydon, J. P. and
    5. DeMayo, F. J.
    (2012). GATA2 is expressed at critical times in the mouse uterus during pregnancy. Gene Expr. Patterns 12, 196-203. doi:10.1016/j.gep.2012.03.004
    OpenUrlCrossRefPubMedWeb of Science
  165. ↵
    1. Rubel, C. A.,
    2. Wu, S.-P.,
    3. Lin, L.,
    4. Wang, T.,
    5. Lanz, R. B.,
    6. Li, X.,
    7. Kommagani, R.,
    8. Franco, H. L.,
    9. Camper, S. A.,
    10. Tong, Q. et al.
    (2016). A Gata2-dependent transcription network regulates uterine progesterone responsiveness and endometrial function. Cell Rep. 17, 1414-1425. doi:10.1016/j.celrep.2016.09.093
    OpenUrlCrossRef
    1. Scheenstra, M. R.,
    2. De Cuyper, I. M.,
    3. Branco-Madeira, F.,
    4. de Bleser, P.,
    5. Kool, M.,
    6. Meinders, M.,
    7. Hoogenboezem, M.,
    8. Mul, E.,
    9. Wolkers, M. C.,
    10. Salerno, F., et al.
    (2016). GATA1-deficient dendritic cells display impaired CCL21-dependent migration toward lymph nodes due to reduced levels of polysialic acid. J. Immunol. 197, 4312-4324. doi:10.4049/jimmunol.1600103
    OpenUrlAbstract/FREE Full Text
  166. ↵
    1. Schrode, N.,
    2. Saiz, N.,
    3. Di Talia, S. and
    4. Hadjantonakis, A.-K.
    (2014). GATA6 levels modulate primitive endoderm cell fate choice and timing in the mouse blastocyst. Dev. Cell 29, 454-467. doi:10.1016/j.devcel.2014.04.011
    OpenUrlCrossRefPubMedWeb of Science
  167. ↵
    1. Schuh, A. H.,
    2. Tipping, A. J.,
    3. Clark, A. J.,
    4. Hamlett, I.,
    5. Guyot, B.,
    6. Iborra, F. J.,
    7. Rodriguez, P.,
    8. Strouboulis, J.,
    9. Enver, T.,
    10. Vyas, P. et al.
    (2005). ETO-2 associates with SCL in erythroid cells and megakaryocytes and provides repressor functions in erythropoiesis. Mol. Cell. Biol. 25, 10235-10250. doi:10.1128/MCB.25.23.10235-10250.2005
    OpenUrlAbstract/FREE Full Text
  168. ↵
    1. Scripture-Adams, D. D.,
    2. Damle, S. S.,
    3. Li, L.,
    4. Elihu, K. J.,
    5. Qin, S.,
    6. Arias, A. M.,
    7. Butler, R. R., III.,
    8. Champhekar, A.,
    9. Zhang, J. A. and
    10. Rothenberg, E. V.
    (2014). GATA-3 dose-dependent checkpoints in early T cell commitment. J. Immunol. 193, 3470-3491. doi:10.4049/jimmunol.1301663
    OpenUrlAbstract/FREE Full Text
  169. ↵
    1. Sepulveda, J. L.,
    2. Belaguli, N.,
    3. Nigam, V.,
    4. Chen, C.-Y.,
    5. Nemer, M. and
    6. Schwartz, R. J.
    (1998). GATA-4 and Nkx-2.5 coactivate Nkx-2 DNA binding targets: role for regulating early cardiac gene expression. Mol. Cell. Biol. 18, 3405-3415. doi:10.1128/MCB.18.6.3405
    OpenUrlAbstract/FREE Full Text
  170. ↵
    1. Shafer, M. E. R.,
    2. Nguyen, A. H. T.,
    3. Tremblay, M.,
    4. Viala, S.,
    5. Béland, M.,
    6. Bertos, N. R.,
    7. Park, M. and
    8. Bouchard, M.
    (2017). Lineage specification from prostate progenitor cells requires Gata3-dependent mitotic spindle orientation. Stem Cell Rep. 8, 1018-1031. doi:10.1016/j.stemcr.2017.02.004
    OpenUrlCrossRef
  171. ↵
    1. Shaw-Smith, C.,
    2. De Franco, E.,
    3. Lango Allen, H.,
    4. Batlle, M.,
    5. Flanagan, S. E.,
    6. Borowiec, M.,
    7. Taplin, C. E.,
    8. van Alfen-van der Velden, J.,
    9. Cruz-Rojo, J.,
    10. Perez de Nanclares, G. et al.
    (2014). GATA4 mutations are a cause of neonatal and childhood-onset diabetes. Diabetes 63, 2888-2894. doi:10.2337/db14-0061
    OpenUrlAbstract/FREE Full Text
  172. ↵
    1. Shi, Z. D.,
    2. Lee, K.,
    3. Yang, D.,
    4. Amin, S.,
    5. Verma, N.,
    6. Li, Q. V.,
    7. Zhu, Z.,
    8. Soh, C. L.,
    9. Kumar, R.,
    10. Evans, T. et al.
    (2017). Genome editing in hPSCs reveals GATA6 haploinsufficiency and a genetic interaction with GATA4 in human pancreatic development. Cell Stem Cell 20, 675-688.e676. doi:10.1016/j.stem.2017.01.001
    OpenUrlCrossRefPubMed
  173. ↵
    1. Shimosato, D.,
    2. Shiki, M. and
    3. Niwa, H.
    (2007). Extra-embryonic endoderm cells derived from ES cells induced by GATA factors acquire the character of XEN cells. BMC Dev. Biol. 7, 80. doi:10.1186/1471-213X-7-80
    OpenUrlCrossRefPubMed
  174. ↵
    1. Shivdasani, R. A.,
    2. Fujiwara, Y.,
    3. McDevitt, M. A. and
    4. Orkin, S. H.
    (1997). A lineage-selective knockout establishes the critical role of transcription factor GATA-1 in megakaryocyte growth and platelet development. EMBO J. 16, 3965-3973. doi:10.1093/emboj/16.13.3965
    OpenUrlAbstract
    1. Skapenko, A.,
    2. Leipe, J.,
    3. Niesner, U.,
    4. Devriendt, K.,
    5. Beetz, R.,
    6. Radbruch, A.,
    7. Kalden, J. R.,
    8. Lipsky, P. E. and
    9. Schulze-Koops, H.
    (2004). GATA-3 in human T cell helper type 2 development. J. Exp. Med. 199, 423-428. doi:10.1084/jem.20031323
    OpenUrlAbstract/FREE Full Text
    1. Sodhi, C. P.,
    2. Li, J. and
    3. Duncan, S. A.
    (2006). Generation of mice harbouring a conditional loss-of-function allele of Gata6. BMC Dev. Biol. 6, 19. doi:10.1186/1471-213X-6-19
    OpenUrlCrossRefPubMed
  175. ↵
    1. Song, S.-H.,
    2. Hou, C. and
    3. Dean, A.
    (2007). A positive role for NLI/Ldb1 in long-range beta-globin locus control region function. Mol. Cell 28, 810-822. doi:10.1016/j.molcel.2007.09.025
    OpenUrlCrossRefPubMedWeb of Science
  176. ↵
    1. Spilianakis, C. G. and
    2. Flavell, R. A.
    (2004). Long-range intrachromosomal interactions in the T helper type 2 cytokine locus. Nat. Immunol. 5, 1017-1027. doi:10.1038/ni1115
    OpenUrlCrossRefPubMedWeb of Science
  177. ↵
    1. Stanescu, D. E.,
    2. Hughes, N.,
    3. Patel, P. and
    4. De León, D. D.
    (2015). A novel mutation in GATA6 causes pancreatic agenesis. Pediatr. Diabetes 16, 67-70. doi:10.1111/pedi.12111
    OpenUrlCrossRef
  178. ↵
    1. Stefanovic, S.,
    2. Barnett, P.,
    3. Van Duijvenboden, K.,
    4. Weber, D.,
    5. Gessler, M. and
    6. Christoffels, V. M.
    (2014). GATA-dependent regulatory switches establish atrioventricular canal specificity during heart development. Nat. Commun. 5, 3680. doi:10.1038/ncomms4680
    OpenUrlCrossRefPubMed
  179. ↵
    1. Stewart, K. and
    2. Bouchard, M.
    (2014). Coordinated cell behaviours in early urogenital system morphogenesis. Semin. Cell Dev. Biol. 36, 13-20. doi:10.1016/j.semcdb.2014.09.001
    OpenUrlCrossRef
  180. ↵
    1. Stumpf, M.,
    2. Waskow, C.,
    3. Krotschel, M.,
    4. van Essen, D.,
    5. Rodriguez, P.,
    6. Zhang, X.,
    7. Guyot, B.,
    8. Roeder, R. G. and
    9. Borggrefe, T.
    (2006). The mediator complex functions as a coactivator for GATA-1 in erythropoiesis via subunit Med1/TRAP220. Proc. Natl. Acad. Sci. USA 103, 18504-18509. doi:10.1073/pnas.0604494103
    OpenUrlAbstract/FREE Full Text
    1. Tahara, N.,
    2. Akiyama, R.,
    3. Theisen, J. W. M.,
    4. Kawakami, H.,
    5. Wong, J.,
    6. Garry, D. J. and
    7. Kawakami, Y.
    (2018). Gata6 restricts Isl1 to the posterior of nascent hindlimb buds through Isl1 cis-regulatory modules. Dev. Biol. 434, 74-83. doi:10.1016/j.ydbio.2017.11.013
    OpenUrlCrossRef
  181. ↵
    1. Takemoto, N.,
    2. Arai, K. and
    3. Miyatake, S.
    (2002). Cutting edge: the differential involvement of the N-finger of GATA-3 in chromatin remodeling and transactivation during Th2 development. J. Immunol. 169, 4103-4107. doi:10.4049/jimmunol.169.8.4103
    OpenUrlAbstract/