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Fig. 7. Aldehyde dehydrogenase labeling of the adult
retina shown as whole mount (A), and in cross-section in
the dorsoventral plane at low (B) and higher magnification
(C). C is a view of the transition zone from dorsal to
central retina. Scales: (A) lmm; (B) 500 jjm; (C) 50/an.

pressed (Fig. 8). Isoelectric focusing blots of cytosolic
fractions from adult lens and cornea, tissues known for
high aldehyde dehydrogenase activity (Holmes, 1988),
are given for comparison (Fig. 8): the corneal aldehyde
dehydrogenases were different, but the lens forms
resembled those from retina. Not shown here is a weak
aldehyde dehydrogenase signal from the membrane-
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Fig. 8. Isoelectric focusing blot of cytosolic aldehyde
dehydrogenases from dorsal and ventral retina halves, and
from cornea and lens of adult mouse. Note the much
higher level of the basic isoform in the dorsal than ventral
retina sample. A similar asymmetry in a basic cytosolic
aldehyde dehydrogenase isoform was seen in the adult rat
retina (not shown).

bound fractions with isoelectric point around 6.5-7.5,
which was only detectable in samples from dorsal retina
halves; so far we have not been able to localize it more
precisely. This form was of much lower abundance than
the basic cytosolic form, which makes it unlikely to
contribute significantly to the asymmetrical labeling in
Fig. 7.

Discussion

We have described here the identification of a soluble
protein, present at high concentration in the dorsal part
of the embryonic retina, as an aldehyde dehydrogenase.
Aldehyde dehydrogenases are a structurally similar
group of enzymes that catalyze the oxidation of a wide
variety of aldehydes (Lindahl and Hempel, 1990;
Manthey et al. 1990; Sladek et al. 1989). The isoforms
differ with respect to subcellular localization - mito-
chondrial, microsomal and cytosolic - , and with respect
to their physical and catalytic properties. Many forms
oxidase a broad range of aldehydes, but others are
relatively substrate-specific. From the liver, the organ
with the highest levels of aldehyde dehydrogenases,
twelve different isoforms have been isolated in the
mouse (Manthey et al. 1990). Of these, seven are
cytosolic forms, five with isoelectric points in the acidic
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to close-neutral pH range and two with basic pi, the
forms AHD-2 and AHD-7. AHD-2 shows preference
for aliphatic and AHD-7 for cyclic substrates, and both
isoforms have recently been reported to catalyze the
reaction of retinaldehyde to retinoic acid, with AHD-2
contributing the bulk of this activity in the liver (Lee et
al. 1990a,b, 1991; Manthey et al. 1990). In isoelectric
focusing blots, the aldehyde dehydrogenase from the
dorsal retina lined up precisely with the basic com-
ponent from adult liver, which is consistent with the
assumption that it represents AHD-2, maybe with a
minor contribution of AHD-7.

This raises the possibility that retinoic acid, which has
been implicated in the morphogenesis of other systems
(Blomhoff et al. 1990; Thaller and Eichele, 1987; Tickle
et al. 1982), plays a role in the spatial determination of
the retina. Several other observations suggest a
function of the retinoids in retinal development. The
cellular retinoic acid binding protein CRABP I is
expressed in the central part of the embryonic retina
(Dolle" etal. 1990; Perez-Castro etal. 1989), at a location
that appears to be just ventral to the aldehyde
dehydrogenase boundary. By sequestering retinoic
acid, CRABP is believed to act as a buffer, protecting
cells from inappropriate actions of free retinoic acid
(Hirschel-Scholz et al. 1989; Vaessen et al. 1990). The
apparent localization of CRABP at the aldehyde
dehydrogenase boundary might result in an even
sharper step in free retinoic acid levels. Free retinoic
acid exerts its effects by binding to nuclear receptors
and turns these into specific transcription factors
(Blomhoff et al. 1990; Petkovich et al. 1987). The early
embryonic retina contains transcripts for the retinoic
acid receptor- a and very high levels of the cellular
retinol binding protein CRBP I, both homogeneously
distributed (D0II6 et al. 1990); the role of CRBP is
believed to be the accumulation of retinol from the
blood circulation. Both deprivation and excess of
retinoids have pronounced teratogenic effects on the
eye. The main defect in offspring of pregnant pigs and
rats, kept on a vitamin-A deficient diet prior and during
the early stages of pregnancy, consists of complete lack
of eyes, microphthalmia or other gross ocular malfor-
mations (Hale, 1937; Warkany and Schraffenberger,
1946; Wilson et al. 1953). In experimental hypervitami-
nosis-A-induced teratogenesis, as well as in accidental
retinoic-acid embryopathy in humans, a wide range of
ocular abnormalities were observed in addition to other
malformations (Geelen, 1979; Lammer et al. 1985).
Interestingly, these abnormalities include indications
that the optic axons have lost their normal sense of
directionality: in the eye, optic axons failed to grow
towards the optic disk and, in the diencephalon, optic
axons grew abnormally towards rostral rather than in
the direction of their normal targets (Giroud et al.
1962). So far, there is no direct evidence for retinoic
acid synthesis in the embryonic eye or for a higher level
of retinoic acid in dorsal retina.

By immunohistochemistry, we found the highest
levels of aldehyde dehydrogenase expression of the
entire early embryo in the eye and in the fourth

pharyngeal pouch. For the early embryonic eye, we
estimate that the enzyme constitutes between one-half
to one percent of soluble proteins in the dorsal retina, a
level not much lower than in the adult liver. It is
surprising that such an abundant protein has not been
detected in the many attempts to find asymmetrically
distributed factors through monoclonal antibodies,
while antibodies against a much more elusive property
- an open conformation of the ribosome-associated
protein p40, which is considerably less abundant than
the aldehyde dehydrogenase (unpublished obser-
vations) - have been generated repeatedly (McCaffery
et al. 1990; Rabacchi et al. 1990). The very high level of
the enzyme may point to a unique and critical
dependence of the developing eye for its product(s). If
these products do indeed include retinoic acid, the high
enzyme levels are consistent with the observations that
teratogenic effects of vitamin-A deprivation are most
severe for the eye (Hale, 1937; Wilson et al. 1953).

A large range of experimental manipulations on the
vertebrate visual system, such as eye rotations and
displacement of retinal or target tissue fragments to
inappropriate locations, have provided an operational
demonstration for the existence of positional infor-
mation: single retinal ganglion cells behave as if they
remember from where in the retina they come from and
what their proper target ought to be (O'Rourke and
Fraser, 1988). This hypothetical positional information
is established very early in eye development, when
exactly is not known. As a biochemical basis for retinal
specificity, Sperry postulated the existence of two sets
of graded cell surface markers, orthogonally arranged
in the anteroposterior and dorsoventral axes of the
retina (Sperry, 1963). Aldehyde dehydrogenase, like
the p40 antigen, is clearly not a cell surface marker of
the kind postulated by Sperry, but the two factors might
be involved in directing the expression of surface
markers such as the TOP and the JONES antigens
(Constantine-Paton etal. 1986; Trisler etal. 1981). The
distribution of aldehyde dehydrogenase and p40 anti-
gen is not in the form of a gradient, rather it resembles
the delineation of a compartment, and it seems
complementary to the Pax-2 transcript that appears to
mark a ventral retinal compartment (Nornes et al.
1990). Of these three early retinal marker systems, the
aldehyde dehydrogenase may be the earliest one; its
product might suppress expression of Pax-2 in ventral
retina, and positively influence the p40 antigen.

We have given here a brief description of the most
prominent characteristics in the spatiotemporal distri-
bution of the aldehyde dehydrogenase. Many of the
details, in particular concerning the transition from the
late embryonic to the adult pattern, remain to be
worked out. In the early embryo, the enzyme demar-
cated the dorsal retina. Later and transiently a complex
pattern developed which consisted of a dorsal compart-
ment, optic axons emerging from it, and a very weakly
labeled axon contribution from the ventral pole. The
positional asymmetry in aldehyde dehydrogenase,
which in the embryo was expressed in those cells that
presumably need it - undifferentiated stem cells and
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retinal ganglion cells - persisted into adulthood, but in
the mouse it was now mainly expressed in Miiller glial
cells. This observation confirms the impression that it is
the spatial localization rather than the cell type that
matters for the enzyme.

We are grateful to Dr John Hilton and Dr Ronald Lindahl
for gifts of the aldehyde dehydrogenase antisera, and to Lise
Riviere for help with the protein sequence analysis. This work
was supported by grant EY 03819 from the National Eye
Institute.
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