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theless, that the exaggerated myelomere undulations
seen after colchicine treatment favour this possibility,
and result from inhibition of neuroepithelial cell
mitosis. He suggested that the centre of each myelo-
mere (opposite the inter-somite boundaries) has a
higher mitotic rate than the flanking regions.

Our observations that the effects of colchicine are
visible within 45 min of drug application, that irregular
undulations also appear opposite the segmental plate,
and that another cell cycle inhibitor, BrdU, does not
cause exaggerated neuromeres allow an alternative
interpretation: namely, that the undulations are caused
not by interference with the cell cycle, but by the
disassembly of structural microtubules within each
neuroepithelial cell, which may produce local alter-
ations in the longitudinal rigidity of the neural tube. In
the region of the somites, the undulations are in register
with each intersomitic cleft, as would be expected if the
somites restrict the excursions of the bulging neural
tube; at the segmental plate, however, the undulations
are not constrained by neighbouring structures and are
randomly arranged. We cannot conclude, then, that the
effects of colchicine provide evidence for periodic
proliferation centres associated with the genesis of
myelomeres.

A further observation is that in the spinal cord there
are no segmental groupings of S-phase-labelled neuro-
epithelial cells. This contrasts with the hindbrain, where
pulse-labelling with anti-BrdU reveals that the charac-
teristic interkinetic nuclear migration within the neuro-
epithelium (Sauer, 1935) is reduced at the rhombomere
boundaries (Lumsden, 1990).

An essential function of the spinal cord is to activate
the muscles derived from each segmental myotome. On
this basis alone, some degree of segmental organisation
within the developing spinal cord could be anticipated,
with a period matching that of the myotomes. However,
using a variety of morphological methods to delineate
the early differentiation of neurons, segmental patterns
are not detected within the spinal cord. This applies not
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Fig. 8. Whole-mount stage 18
chick embryo stained with
3A10 monoclonal antibody.
Anterior to the right.
Arrowheads denote the
positions of the adjacent
somite boundaries.
Commissural axons are seen
growing in mediolateral plane,
and some have entered the
ventral midline floorplate
region. Longitudinal projection
neurons are also visible in the
region of the basal plate-
floorplate boundary. No
segmental differentiation
patterns are seen. Scale bar
JOfitn.

only to the positions of neuronal cell bodies, but also to
axon trajectories. There is also no evidence for the
existence of primary motor neurons with stereotyped
axon projection patterns outside the spinal cord (see
below). At any particular segmental level, the motor
axons contributing to one ventral root arise from a cell
group whose A-P extent is equivalent to one myelo-
mere, but which is not in register with the myelomeres
(see also Hirano and Fuse, 1989). Instead, each group is
centred upon the adjacent anterior half-sclerotome
(Fig. 6A). Although such cell groupings retain a
metameric pattern, they can be explained solely on the
basis of mesodermal segmentation, without invoking
additional segmentation within the neural epithelium.
Only A-half-sclerotome is permissive for axon out-
growth, while P-half-sclerotome repels axons (Keynes
and Stern, 1984; Davies et al. 1990). The groupings
suggest that motor cell bodies, whether sited opposite
A- or P-half-sclerotome, project their axons into the
nearest available anterior half-sclerotome. Axons aris-
ing opposite P-half-sclerotome might be attracted to the
nearest A-half-sclerotome by a short-range diffusible
cue (Keynes et al. 1991).

Mesodermal segmentation also controls the forma-
tion of the dorsal root ganglia. Like motor axons, the
dorsal root ganglia and their parent neural crest cells
are confined to anterior rather than posterior half-
sclerotome (Keynes and Stern, 1984; Rickmann et al.
1985; Bronner-Fraser, 1986), and Teillet et al. (1987)
have shown that an individual ganglion is derived from
a strip of crest centred upon the anterior half-
sclerotome. Whether mesodermal segmentation also
determines segmentation of the autonomic preganglio-
nic neurons is unclear. The axons of these cells arise,
like those of the somatic motor axons, from cell bodies
at each corresponding spinal level (Rubin and Purves,
1980), and the projection patterns of thoracic pregang-
lionic sympathetic neurons appear to have a segmental
periodicity (Ezerman et al. 1990).

The absence of segmental differentiation patterns in
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the developing chick spinal cord has also been noted by
Layer et al. (1988) for acetylcholinesterase expression in
developing motor neurons, and by Schlosser and
Tosney (1988) for projection neurons that send axons
longitudinally within the lumbar spinal cord (see also
Oppenheim et al. 1988; Yaginuma et al. 1990). Previous
anatomical studies of the adult higher vertebrate spinal
cord have not reported any periodic neuronal arrange-
ments, with the exception of certain groups of cells
associated with the preganglionic autonomic motor
columns. The marginal (Hoffman's) nuclei, first
recorded by Gaskell (1885) in the alligator, have since
been described in birds and mammals as well as reptiles
(von Kolliker, 1902; Huber, 1936; Nieuwenhuys, 1964;
Anderson et al. 1964). The cells of these nuclei appear
after the extension of the first motor axons from the
ventral neural tube, and aggregate preferentially in
regions of the ventro-lateral white matter between the
emerging ventral roots. There is no cell-free zone
between one cluster and the next, however, and it
seems likely that such segmentation could be secondary
to that of the motor axons, determined in turn by
segmentation in the mesoderm (Keynes and Stern,
1984).

Another group of cells with a periodic arrangement
in the adult is the 'zone intermediaire a cellules
intercalees' described in a variety of mammals by
Laruelle (1937) and named the 'nucleus intercalatus
spinalis' by Petras and Cummings (1972) in a study of
the rhesus monkey. This consists of a series of
transverse bands of cells, which extend across the spinal
cord in the region of the central canal, appearing to
unite the intermedio-lateral (preganglionic sympath-
etic) cell columns on right and left sides of the spinal
cord. Petras and Cummings (1972) note how the
metameric arrangement of these neurons is 'a strikingly
consistent characteristic'. In the cat, periodic clusters of
neurons have also been described within the interme-
dio-lateral cell column itself (Oldfield and McLachlan,
1981; Morgan et al. 1986). In both cases, however, the
A-P repeat length is less than that of the spinal nerves,
and is not precisely regular. It may be related to the
'microsegmentation' of alternating ipsi- and contralat-
eral projecting neurons, described by Altman and
Bayer (1984) in the developing rat spinal cord. As
suggested by the name, the A-P length of each
'microsegment' is less than that of the myelomeres and
somites; the periodicity is also variable, and may arise
from irregular fasciculation of axon bundles, in much
the same way that each developing ventral and dorsal
root subdivides into (irregularly sized) axon fascicles
(Keynes and Stern, unpublished observations).

The absence of clear segmental patterns of neuronal
development in the higher vertebrate spinal cord
contrasts with the spinal cords of cephalochordates,
agnathans and gnathostome fishes, for which there are
several such descriptions. Bone (1960) described
segmental arrangements of interneurons and motor
neurons in the nerve cord of the adult Amphioxus.
Whiting (1948) described a class of large interneurons in
the larval brook lamprey matching the periodicity in the

adjacent mesoderm (one neuron per myotome).
Finally, both the primary motor neurons and certain
intrinsic interneurons in the developing zebrafish spinal
cord are segmentally organised (Myers, 1985; Eisen et
al. 1986; Westerfield et al. 1986; Myers et al. 1986;
Hanneman et al. 1988; Hanneman and Westerfield,
1989; Kuwada and Bernhardt, 1990), as they may be in
other teleosts (Fetcho, 1987). In the zebrafish there are
three primary motor neurons per myotome; each triad
occupies a distinct position in relation to the myotome,
and the three neurons bear defined positional relations
both with respect to one another along the A-P axis
and to the myotomes on which they arborise (Eisen et
al. 1986). As noted above, we find no evidence for the
existence of segmental primary motor neurons during
chick development, and the same holds for the
amphibian spinal cord (Coghill, 1913; Youngstrom,
1940; Silver, 1942; Blight, 1978; Forehand and Farel,
1982; Roberts and Clarke, 1982). The possibility
remains, however, that in amphibians segmentation of
motor neurons does exist very early in development,
but becomes obscured as a result of the relative
displacement of the myotomes (Westerfield and Eisen,
1985; Nordlander, 1986).

In the absence of segmental patterns of neuronal
differentiation, mechanisms must nevertheless exist to
specify broad regions along the A-P axis of the spinal
cord. For example, groups of neurons such as the limb
motor columns, autonomic motor columns and Clarke's
column span A-P distances of several somites/
myelomeres and, within these groupings, cells at
different A-P positions have distinct target preferences
(Lance-Jones and Landmesser, 1981; Purves etal. 1981;
Wigston and Sanes, 1982). It seems possible that,
during the course of vertebrate evolution, intrinsic
spinal cord segmentation was lost in subservience to
paraxial mesodermal segmentation, as higher motor
centres exerted increasing control over spinal neuro-
muscular circuits. In parallel, regional specification of
the spinal cord perhaps acquired mechanisms operating
over multiples of the primitive segmentation period.
The presence within the developing mouse spinal cord
of A-P boundaries of expression of certain homeobox
genes raises the possibility that these genes may be
involved in such specification. It is interesting to
speculate that the A-P boundaries of these multiseg-
mental regions may correspond to ancestral segmental
boundaries.
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