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mouse (De Carlos et al., 1996; Marin and Rubenstein, 2003).
Injections into the subpallium of caudal slices label large numbers
of cells in the DVR and dorsal cortex (C.M. and Z.M., unpublished),
suggesting that the turtle CGE releases cells migrating tangentially
to the pallium as described in the mouse (Nery et al., 2002; Yozu et
al., 2005). Similarly, the PSB in turtle releases cells that migrate
dorsally and ventrally along the pial surface of the telencephalon
(Bielle et al., 2005). In contrast to mice, these cells are numerous at
early embryonic stages in turtle (stage 14) and their number
increases as embryonic development proceeds. This confirms that
cell production at the PSB junction differs strikingly between turtles
and mice during embryonic development (Fernandez et al., 1998).
In birds, it has been demonstrated from chick-quail graft studies and
organotypic slice culture experiments that, similar to rodents, most

GABAergic interneurons originate in the ventral telencephalon
(Cobos et al., 2001a; Cobos et al., 2001b; Tuorto et al., 2003).
However, the relative contribution of cohorts generated in the ventral
pallidum (MGE) and in the dorsal subpallium (paleostriatum, LGE)
to the GABAergic population in the dorsal telencephalon is
emphasized slightly differently in these studies (Cobos et al., 2001a;
Cobos et al., 2001b; Tuorto et al., 2003).

Migratory routes: specificity and conserved
properties between distant species
In turtle embryos, streams of tangentially migrating cells are situated
in locations predicted from immunohistochemical studies (Blanton
and Kriegstein, 1991b) (this study). Cells labeled from sites in the
dorsal (LGE) or ventral (MGE) subpallium initially follow common
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Fig. 6. Mouse-turtle interspecies grafting
experiments reveal conserved guidance
mechanisms in mammals and reptiles.
(A-B�) When DiI-labeled explants of PSB and MGE
of stage 16 to 18 turtle embryos were grafted into
E13.5 mouse forebrain slices, the released labeled
cells (red) migrated within the host tissue. Cells
from PSB explants grafted into the corticostriatal
boundary (A) migrated along the corticostriatal
boundary and accumulated ventrally (arrow),
whereas MGE cells grafted into the basal
telencephalon (B,B�) migrated in the orthogonal
direction, across the corticostriatal boundary. Turtle
MGE cells dispersed and migrated as individuals to
colonize the mouse cortex (B�) and some
developed branched neurites in the host tissue
(B�). (C-F) GFP-expressing MGE explants from
E12.5 mouse embryos grafted into stage 16 turtle
slices (C) or into stage 17 telencephalic vesicles in
ovo (D) were no longer visible after a few days.
Individual GFP-positive mouse MGE cells migrated
long distances within the telencephalon of turtle
embryos, colonized the entire slice (C), or the
pallium in the in ovo experiments (D). By contrast,
cortical explants (E,F) still formed a compact mass
of tissue several days after grafting and released
very few cells. The few cells that were released did
not migrate very far, either in grafted slice (E) or
grafted hemisphere (F). Scale bars: 500 �m in
A,B,C-F; 200 �m in B�; 40 �m in B�.
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tangential migratory pathways, then reorient radially at the
subpallium-DVR boundary, and distribute again tangentially to the
ventricle in the pallium. Migratory routes show the same orientation
with regard to pallial and subpallial molecular domains as described
in birds (Tuorto et al., 2003) and mammals (De Carlos et al., 1996;
Tanaka et al., 2003; López-Bendito et al., 2004). In both turtle and
mouse, cells from the PSB also migrate radially along the PSB
boundary and tangentially in the marginal zone (Bielle et al., 2005).

Nevertheless, cells labeled from the MGE, LGE and PSB in turtle
slices show some specificity in their distribution patterns. In contrast
to MGE cells that occasionally enter the central core of the DVR,
cells from the LGE distribute within the whole DVR. Furthermore,
unlike MGE and LGE cells, PSB cells do not migrate ventrally into
the subpallium and do not distribute along the ventricle in the
pallium. Therefore, the tangentially migrating cells generated in
PSB, LGE and MGE each exhibit some specific migratory
properties. However, in our experiments, cell movements were
limited in the coronal plane and we did not investigate rostrocaudal
migrations that are known to occur in rodents (Tanaka et al., 2006).

Our chimeric mouse-turtle slice culture and in ovo graft
experiments indicate that the signals required for tangential
migration and integration in a specific fashion are indeed highly
conserved. The ability of the mammalian MGE cells to read
developmental signals in the turtle embryonic brain is fascinating,
considering the phylogenetic distance between the two species.
Moreover, this process seems to be independent of the development
of the DVR, which lies dorsal to the PSB. Indeed, mouse MGE cells
behave as turtle MGE cells when they avoid the turtle DVR. Further
chimeric graft experiments could help in testing current ideas on
homologies. Our study suggests that the subcortical generation of
the GABAergic interneurons and their tangential migration to the
dorsal telencephalon during embryonic development is universal in
mammals and sauropsids. GABAergic neurons in fixed embryonic
turtle brains and cells labeled in cultured slices show branched
leading processes similar in morphology to mammalian tangentially
migrating neurons. This suggests common migratory mechanisms
(Bellion et al., 2005). In addition, the capacity of cells generated in
the subpallium to migrate tangentially over long distances is
conserved at adult stage in both mammals and sauropsids (Perez-
Canellas and Garcia-Verdugo, 1996; Perez-Canellas et al., 1997;
Lois and Alvarez-Buylla, 1994).

Fate of tangentially migrating neurons
Our results support the view that several cohorts of tangentially
migrating cells are generated in distinct sectors of the subpallium
in reptiles, and that these cohorts distribute along specific
migratory pathways. Differences in the neuritic morphology of
tangentially migrating cells produced in the MGE and in the PSB
strongly support the hypothesis that distinct populations of

tangentially migrating cells are produced in ventral and dorsal
sectors of the subpallium. In mammals, recent studies have
established a correlation between the spatiotemporal segregation
of the neurogenesis and the generation of different populations of
GABAergic neurons (Butt et al., 2005; Yozu et al., 2005).
Accordingly, morphological subclasses of GABAergic
interneurons have been observed in the turtle cortex (Blanton et
al., 1987). It would be interesting to determine whether they
originate in distinct cohorts and whether cells generated in the
PSB contribute to the population of Cajal-Retzius cells in the
turtle forebrain (Goffinet, 1983), as recently established in
mammals (Bielle et al., 2005). Further studies that incorporate
transcription factor and interneuron marker expression are
required but might prove difficult because cells with strong
Nkx2.1 expression are observed neither in mouse nor turtle
pallium (Sussel et al., 1999) (this study). The molecular
mechanisms underlying the production of tangentially migrating
cohorts are not understood in turtle, but it is likely that some
principles are conserved between sauropsids and mammals. In
mammals, local and temporal variations in cell specification are
likely to rely on the combinatorial expression of different
transcription factors in different subregions (MGE, LGE and
CGE) of the neuroepithelium (Nery et al., 2002) (for a review, see
Métin et al., 2006). Many of these transcription factors have
orthologs expressed in the ventral forebrain of reptiles and birds
(Fernandez et al., 1998; Puelles et al., 2000) (this study).
Therefore, it is likely to be a conserved genetic pathway that
specifies the areas that produce different populations of
GABAergic neurons in the turtle.

Implications for our current theories on the origin
of the mammalian neocortex
In lizard, turtle and bird, the dorsal cortex appears rudimentary
compared with that in mammals, but the DVR hosts most of the
neurons required for the information-processing circuits that are
homologous to the mammalian neocortex (Karten, 1969; Karten,
1997; Ulinski, 1983; Manger et al., 2002). This led Karten (Karten,
1997) to propose that a considerable population of mammalian
neurons is generated outside the cortex and migrates into the cortex
during development (Northcutt and Kaas, 1995; Karten, 1997).
However, neurons migrating tangentially to the neocortex in
mammals are mostly GABAergic and originate from domains that
do not coincide with the domain considered homologous to the DVR
as defined by Emx gene expression patterns (Fernandez et al., 1998;
Puelles et al., 2000). Moreover, previous studies in birds (Cobos et
al., 2001a; Cobos et al., 2001b; Tuorto et al., 2003) and our present
study in turtle demonstrate tangential migration of GABAergic
interneurons generated in a Dlx-expressing subpallial domain in
sauropsids.
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Table 3. Turtle-mouse interspecies graft experiments
Turtle 

Stage 16-18 Stage 20

Explant donor Mouse E13.5 Explant donor Pallium Subpallium Pallium Subpallium

Turtle stage 16-18
MGE 5 E12.5 mouse EGFP Cortex 1 3 6 3
LGE 2 MGE 2 2 2 5
PSB 4 E12.5 mouse lacZ Cortex 3 3 3 4
DVR 3 MGE 5 6 7 4

To the left is shown the number of E13.5 mouse forebrain slices grafted with turtle explants. To the right is shown the number of turtle forebrain slices (stages 16-18 or stage
20) grafted with E12.5 mouse explants expressing either EGFP or lacZ. Turtle explants were grafted in homotopic positions in mouse slices (DVR explants were placed in the
lateral cortex). Mouse explants were placed in pallial (DVR or dorsal cortex) or subpallial (MGE or LGE) areas in turtle slices.
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Therefore, it is more conceivable that changes in the local dorsal
cortical neurogenetic program, together with some major
rearrangements at the striatocortical junction (Puelles et al., 2000;
Striedter, 2005; Molnár and Butler, 2002a; Molnár and Butler,
2002b), provide the foundation for remodeling the mammalian
cerebral cortex. It is currently unclear how GABAergic populations
increase together with the glutamatergic neurons whose expansion
and greater complexity is related to the elaboration of the mitotic
compartments in the mammalian germinal zone (Krubitzer and
Kahn, 2003; Noctor et al., 2004; Lukaszewicz et al., 2005;
Tamamaki, 2005; Molnár et al., 2006; Martinez-Cerdeno et al.,
2006). Although the generation of the glutamatergic and
GABAergic neurons is to a large extent separated in sauropsids and
mammals, the balance between these two cell types is maintained.
This must have required the evolution of as yet unknown regulatory
mechanisms.
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