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Fig. 6. ABI-1 expression and motoneuron migration defects. (A-D) Expression pattern of ABI-1. (A) Head of a larva expressing pabi-1.::gfp in
the AIYL/R neurons. (B,C) Expression of ABI-1 detected by immunostaining with PAb-ABI-1. (B) Head of a wild-type animal showing ABI-1 expression
in the nerve ring and in the cell bodies of the RMEL/R neurons (arrow). (C) Ventral surface of the midbody of an adult worm showing ABI-1 in the
cell bodies of motoneurons (arrowheads), in addition to the longitudinal tracts of the ventral cord (VC) and the dorsal commissures (arrow).

(D) Expression of ABI-1 in coelomocyte (CC). (E-H) Fluorescence micrographs showing wild-type (E) and abi-1(rnai) (F-H) animals. Ventral is down in
all cases except H. (E) Wild-type animal with motoneuron cell bodies located ventrally and dorsal commissures extending to the dorsal cord. (F) abi-
1(rnai) animal showing a truncated and misguided dorsal commissure (arrowhead), and a truncated dorsal commissure with anterior and posterior
ectopic lateral branches (arrow). (G) Misrouting and branching of dorsal commissures (arrows). (H) Ventral view of the ventral cord of an abi-1(rnai)

animal showing marked defasciculation (arrows). Scale bars: 50 um.

defects in motoneurons, including the presence of ectopic branches
in commissures, giving rise to disorganized neural networks (Fig.
6F,G). Frequently, dorsally directed axons were unable to complete
their migration to the dorsal cord (32%, #n=90) and either bifurcated
prematurely, extending lateral processes anteriorly and posteriorly,
or produced several knob-like structures in disoriented processes,
which was suggestive of growth cone stalling (Fig. 6F).
Defasciculation of the ventral cord was also frequently observed
(13%, n=90; Fig. 6H). Similar phenotypes have been reported in
unc-53, where approximately 13% of motoneuron commissures are
abnormal and fail to reach the dorsal cord (Stringham et al., 2002).

Disruption of UNC-53L causes defects in cell
outgrowth

Although the N terminus of UNC-53 inclusive of a CH domain is
sufficient to bind ABI-1 in vitro, this region is absent in short UNC-
53 isoforms (Stringham et al., 2002). To determine whether the long-
isoform of UNC-53 is required for posterior EC migration, we
directed RNAi toward exons 1-4 of UNC-53 and found that
knockdown of UNC-53L is sufficient to impair longitudinal
guidance even with the short isoforms present (Fig. 7A), a finding
that is consistent with UNC-53L function and expression in the EC.
To test further whether the interaction between UNC-53 and ABI-1
is functionally important, we overexpressed the CH domain of
UNC-53L in the excretory cell. At a low frequency, various canal
defects were observed, including ectopic outgrowths, cysts and the
truncation of posterior canals (Fig. 7B-D), phenotypes that are
reminiscent of abi-1 knockdown. This suggests that expression of
the CH domain alone may act in a dominant-negative fashion to
sequester endogenous ABI-1 and prevent functional interaction with
wild-type UNC-53 in vivo.

Mutations in actin-polymerization proteins

disrupt longitudinal migration

The extension of cellular processes is mediated primarily through the
extension of growth cones, highly motile ends at cell tips that are
undergoing constant cytoskeletal reorganization. ABI-1 functions in
cytoskeletal organization through its ability to regulate the ARP2/3
complex to induce actin polymerization. Evidence suggests that ABI-
1 may regulate ARP2/3 through a complex with WAVE in response
to RAC (Bompard and Caron, 2004; Stradal et al., 2004) or by binding
WASP (Innocenti et al., 2002). To test whether these and other proteins
known to function with ABI-1 are involved in longitudinal migration
in C. elegans, we analyzed the excretory canal phenotypes of mutant
and RNAi-treated animals. Of the genes tested, wve-1(rnai), nck-
1(0k694) and arx-2(rnai) produced excretory canal migration
phenotypes reminiscent of unc-53 and abi-1 mutants (Fig. 8), while
wsp-1 and abl-1 did not. Notably, none of the genes tested had more
severe phenotypes either alone or in the background of the null unc-
53 allele (n166), suggesting that the initial trajectory of the posterior
excretory canals to the anterior gonad arm is unaffected by loss of unc-
53, abi-1 or known abi-1 interactors. Interestingly, nck-1 is expressed
in the excretory cell and ventral cord motoneurons (Fig. 9), two cell
types affected in unc-53 and abi-1 mutant backgrounds. We also
examined the potential role of these proteins in the migration of PLM
axons and found that RNAi had modest effects (Table 1).

DISCUSSION

A role for ABI-1 in cell migration and growth cone
extension

In this study, ABI-1 was localized to the cytoplasm of ventral cord
motoneurons, as well as to commissures that span the dorsoventral
axis and innervate the dorsal cord. The expression pattern is
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Fig. 7. RNAi of the long isoform of UNC-53 and overexpression of
the UNC-53 CH domain generates excretory cell defects. (A) RNAI
directed toward the long isoform of unc-53 results in posterior canal
migration, with posterior excretory canals terminating at the vulva
(arrow). Three percent of animals had canals terminating at the vulva
and 24% failed to exit past the posterior gonad arm (n=92). (B) Adult
animal expressing ppgp12::unc-53CH::gfp in the excretory cell body, as
indicated by merge (yellow, arrowhead) with dsRED co-injection marker
pDPY-30::NLS::DSRED2, displays a posterior excretory canal truncated
at the midbody position near the vulva (arrow). Seven percent of canals
terminate near the vulva and 22 % failed to exit the posterior gonad
arm (n=116). (C,D) Defects of the excretory canals in adult animals
expressing ppgp-12::unc-53CH::gfp in the excretory canal. (C) Head of
an adult animal showing cysts (arrow) and ectopic anterior branches
(arrowhead). (D) Adult animal showing various excretory canal cysts
(arrows). Scale bars: 100 um.

consistent with a role for ABI-1 in nervous system development, and
is confirmed by the guidance defects observed in the motoneurons
of abi-1 animals. In mammals, ABI proteins are highly expressed in
the developing brain, where they guide nerve cell placement and
axon outgrowth (Courtney et al., 2000; Grove et al., 2004). ABI-1
localizes to the motile tips of lamellipodia and filopodia, which is
consistent with a role for ABI-1 in actin-polymerization events
(Echarri et al., 2004; Stradal et al., 2001). Surprisingly, ABI-1
expression was not seen in the excretory cell as had been expected
given the physical interaction between UNC-53 and ABI-1, and
because UNC-53 is expressed in the EC (Stringham et al., 2002). It
is possible that endogenous levels of ABI-1 are very low and/or that
sequences required for expression in these cells were absent in the
reporter fusions. Nonetheless, the ability of both ABI-1 and UNC-

53 to rescue outgrowth when expressed specifically in the excretory
cell, coupled with the finding that disruption of the UNC-53—ABI-
1 interaction interfered with canal outgrowth, strongly suggest that
ABI-1 and UNC-53 function together in the excretory cell.

The expression of both ABI-1 and UNC-53 in motoneurons, and
the observation that loss of abi-1 and unc-53 function disrupts the
dorsal outgrowth of motoneuron commissures suggests that these
genes may participate together in dorsoventral guidance decisions. A
role for the navigators, vertebrate homologs of UNC-53, in dorsal
ventral guidance is also apparent. Mouse NAV1 is expressed in
neurons that migrate along both the longitudinal and dorsoventral axes
during development, and rat pontine neuronal explants are unable to
respond to the netrin 1 guidance cue when mouse NAV1 is knocked
down by RNAi (Martinez-Lopez et al., 2005). Circumferential
guidance of growth cones in C. elegans is controlled by multiple
guidance cues, including UNC-6/netrin, which is expressed ventrally,
where it attracts UNC-40/DCC-expressing growth cones and repels
those expressing both UNC-40 and UNC-5 (Wadsworth, 2002).
Interestingly, UNC-34/Ena, which controls multiple aspects of cell
migration and guidance (Gitai et al., 2003; Shakir et al., 2006; Withee
etal., 2004; Yu et al., 2002), can suppress ectopic UNC-5 expression,
placing UNC-34 downstream of UNC-5 in circumferential guidance
(Colavita and Culotti, 1998). Mammalian Ena function is partially
dependent on ABI proteins, and could suggest a role for ABI-1 in
circumferential guidance in worms. (Comer et al., 1998; Juang and
Hoffmann, 1999; Tani et al., 2003).

ABI-1 interactors and ARP2/3 control longitudinal
migration
The migration defects observed in both abi-1 and unc-53 mutants is
consistent with the biochemical interaction observed between them.
Moreover, the phenotype of the ABI-1 interactor nck-1 in the
excretory cell suggests a similar role for nck-1. The adaptor NCK-1
exerts its influence in part through the modulation of WVE-1, as
NCK-1 and/or RAC activation is able to release SCAR-1 from an
inhibitory complex containing ABI-2 to activate the ARP2/3
complex (Eden et al., 2002). Therefore, it was not surprising that
similar longitudinal guidance phenotypes were also observed in
wve-1 and arx-2, suggesting that the primary mode of unc-53 action
in these migrations is mediated through conserved interactions.
Consistent with this view, both UNC-53 and the RAC activator
UNC-73/TRIO have been implicated in an EGL-17/FGF-
independent signaling mechanism controlling sex myoblast
migration (Chen et al., 1997), suggesting that modulation of the
ARP2/3 complex may be the crucial determinant of actin filament
assembly in this migration as well. Interestingly, the first part of the
posteriorly directed migration of the excretory canals to the anterior
gonad arm was intact for all genes tested, suggesting that another
mechanism independent of unc-53, abi-1 and the ARP2/3 complex
might be driving the initial posterior outgrowth of the canals.
Experiments in both cell culture and model systems reveal that cell
shape changes, and the extension of cellular processes are mediated
through GTPases of the RHO family, including CDC42 and RAC,
which induce the formation of lamellipodia and filopodia by
interacting directly or indirectly with the WASP family of proteins,
resulting in the activation of the ARP2/3 complex and directed actin
nucleation (Bompard and Caron, 2004; Stradal et al., 2004; Takenawa
and Suetsugu, 2007). For example, in C. elegans, loss of WSP-1 or
WVE-1 disrupts hypodermal cell migration and ventral enclosure
during embryogenesis, phenotypes that are also characteristic of CED-
10/RAC-1 mutants (Lundquist et al., 2001) and ARP2/3-complex
knockdown (Sawa et al., 2003). Moreover, the motoneuron guidance
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Fig. 8. Excretory cell morphology in wild type, wve-1(rnai), nck-1(ok694) and arx-2(rnai) animals. (A-D) Fluorescence micrographs of
hermaphrodites carrying the ppgp-12::gfp transgene. The final positions of the posterior excretory canals are marked by arrows and the anus is
marked by arrowheads. Lateral views are shown in all cases except for B, which is a ventral view. Anterior is to the left. Scale bars: 100 um. (A) Wild-
type animal with posterior canals terminating near the anus. (B-D) RNAi-treated and mutant animals, as indicated have posterior excretory canals
that stop anterior to their wild-type positions (arrows). (E) Quantification of posterior longitudinal migration defects. Wild type (n=72), wsp-
1(gm324) (n=69), abl-1(ok171) (n=77), wve-1(rnai) (n=173), nck-1(0k694) (n=50), arx-2(rnai) (n=137), unc-53(n166) (n=55), wve-1(rnai); unc-

53(n166) (n=90), arx-2(rnai); unc-53(n166) (n=91).

defects observed in unc-53 and abi-1 animals are similar to those
observed in ced-10 and wve-1 (Lundquist et al., 2001; Lundquist,
2003; Withee et al., 2004), consistent with a model in which these
proteins operate together in cytoskeletal remodelling. ABI-1 is a
member of a complex consisting of WAVE-1 (WVE-1), GEX-2,
GEX-3 and HSPC300 that promotes actin nucleation (Innocenti et al.,
2004; Stroschein-Stevenson et al., 2006). The defects in cell
movements during morphogenesis reported for gex-2 and gex-3 (Soto
etal., 2002), and the similarities in the phenotypes of abi-1 and wve-
I reported here are consistent with a model in which these proteins
form a similar complex in C. elegans.

Two models of ARP2/3 complex activation have been proposed;
one that relies on WAVE and another that relies on WASP (Bompard
and Caron, 2004; Stradal et al., 2004). ABI-1 seems to participate in
both, binding through its N terminus to WAVE to regulate membrane
protrusion and macropinocytosis, and through its SH3 domain to N-
WASP to stimulate actin-dependent vesicular transport and
endocytosis (Innocenti et al., 2005). Thus ABI-1 may be a central
figure that regulates the proportion of actin filament nucleation
designated for particular processes by partitioning WASP versus

WAVE activation (Innocenti et al., 2005). Our results indicate an
essential role for WAVE as opposed to WASP in longitudinal
outgrowth in C. elegans.

A model for UNC-53-ABI-1 action

Previously, it was shown that UNC-53 interacts physically with SEM-
5/GRB2 (Stringham et al., 2002), a SH2-SH3 adapter involved in
multiple RTK pathways, including FGFR (Dixon et al., 2006), EGFR
(Moghal and Sternberg, 2003), and IR (Hopper, 2006) signaling. At
present, it is unclear whether UNC-53 is a participant in one or several
signaling cascades. For example, whereas both unc-53 and egl-
15/FGFR are expressed in the migrating sex myoblasts (Goodman et
al., 2003), egl-15 is not expressed in axons (where it regulates
outgrowth) but instead exerts its effect through the underlying
hypodermis on which they migrate (Bulow et al., 2004). As UNC-53
is a cytoplasmic protein that functions cell autonomously, this suggests
that it does not act directly downstream of EGL-15/FGFR signaling
in neuronal cell migrations, but that it might be recruited by a different
receptor upstream of SEM-5/GRB2. Moreover, UNC-53, the cell-
adhesion molecule UNC-71/ADAM and UNC-73/TRIO, have all

Fig. 9. Expression pattern of nck-1 using pnck-
1::gfp. (A) Adult hemaphrodite showing expression
in the excretory cell (Exc) and head neurons (HNeu).
(B) View of the midbody of adult hemaphrodite
showing expression in several motoneurons of the
ventral cord (VC). Scale bars: 50 um.
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Table 1. Percentage of anteriorly directed PLM axons
truncated in eri-1(mg366); pmec-4::gfp

Genotype Percentage of truncated PLM axons n

wild type (n2) 0.8 114
unc-53(n166) 100 114
unc-53(rnai) 15 130
abi-1(rnai) 9.6 137
nck-1(rnai) 4 102
arx-2(rnai) 11 104

been implicated in a EGL-17/FGF-independent signaling mechanism
controlling sex myoblast migrations (Chen et al., 1997), suggesting
non-FGEFR signaling is involved in this pathway as well. Therefore the
identity of ligands and receptors upstream of the SEM-5/UNC-53
interaction in cell migration remain elusive.

In this study, we found that a restricted region of the N terminus of
UNC-53 containing a CH domain was sufficient to bind ABI-1 in
vitro, and that the UNC-53—-ABI-1 interaction mediated by this domain
is required for longitudinal cell outgrowth in vivo. CH domains are
commonly found in proteins involved in signal transduction and actin
binding, and are classified by the number and position of CH domains
they contain (Korenbaum and Rivero, 2002). Type 1/2 CH domain
proteins, such as o-actinin, -spectrin and dystrophin, which function
in actin bundling and membrane anchoring (Broderick and Winder,
2005), possess two N-terminal CH domains in tandem. The first Type
1 CH domain mediates actin binding, whereas the second Type 2 CH
domain may (1) stabilize the actin interaction of the Type I domain, (2)
localize the actin-binding protein to the cytoskeleton, or (3) act as a
scaffold for signal transduction (Gimona et al., 2002). By contrast,
UNC-53 possesses a single N-terminal CH domain, and in this respect
is more closely related to Type 3 CH domain-containing proteins, such
as VAV, IQGAP, oPTX and SM22 (Gimona et al., 2002; Stradal et al.,
1998). Type 3 CH domains function like Type 2 CH domains in that
they act as scaffolds that bind proteins involved in the control of
cytoskeletal change and signal transduction (Galkin et al., 2006;
Gimona and Mital, 1998; Korenbaum and Rivero, 2002; Leinweber et
al., 1999). In such a model, UNC-53 may be a scaffold that coordinates
upstream signals transduced through SEM-5/GRB2 to ABI-1 and the
actin cytoskeleton.

The complexity of the unc-53 locus gives rise to several protein
isoforms that are regulated by different promoters and that display
non-overlapping tissue-specific expression patterns (Choi and
Newman, 2006; Stringham et al., 2002). The smaller isoforms are
under the control of intronic promoters, producing polypeptides that
lack CH domains, which might limit their ability to interact with ABI-
1 and significantly alter their function. Interestingly, both murine and
human NAV1 also lack CH domains (unlike mouse and human NAV2
and NAV3), and are the only NAV genes downregulated in brain
following development (Maes et al., 2002; Peeters et al., 2004),
suggesting a possible post-developmental role for the NAVs
possessing CH domains. Understanding the relationship between the
tissue specificity and the domain organization of the various isoforms
of UNC-53 and the vertebrate NAVs should shed light on the
importance of the CH domains in these proteins and how they operate.
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