












We next carried out NMJ electrophysiological assays in mature
embryos to test the functional basis of mutant synaptic defects.
Postsynaptic GluR function was assessed with glutamate-gated
current responses in mtg, jeb and Alk mutants (Fig. 7B-E).
Control NMJs exhibited visible contractions to single
iontophoretic glutamate pulses, and in whole-cell recordings
displayed robust 2000-3000 pA responses (2611±120 pA; n19;
Fig. 7B,E). As a GluR loss-of-function control, we assayed a
strong GluRIID (KaiRIA – FlyBase) mutant, brecP2 (Featherstone
et al., 2005), which exhibited only small, noisy glutamate
responses (380±88 pA; n4; Fig. 7B,E). Null mtg mutants (mtg1

and mtg1/Df) showed weak/limited glutamate-driven muscle
contractions, with a 55% reduction in mean response amplitude
(1165±199 pA; n10; P<0.0001 versus control; Fig. 7C,E). By
contrast, jeb and Alk mutant NMJs exhibited visible glutamate-
driven muscle contractions, and consistently large and robust
postsynaptic current amplitudes comparable to controls (jeb,
2230±88 pA; Alk1, 2998±256 pA; n4 per mutant; P>0.6 versus
control; Fig. 7D,E). To further test NMJ function, we recorded
action potential-dependent excitatory junction currents (EJCs)
evoked by central stimulation. Control and jeb mutant NMJs
displayed comparable, robust EJCs with amplitudes of greater
than 1 nA (see Fig. S5A,B in the supplementary material). We
conclude from these assays that jeb and Alk mutants have
functional NMJs, without detectable impairment of either
presynaptic release capability or postsynaptic responsiveness.
Therefore, the primary mutant impairment appears to be a
defective generation of central excitatory output.

Loss of Jeb-Alk signaling impairs central
functional synapse differentiation
To test embryonic motor circuit differentiation, we recorded
endogenous NMJ synaptic transmission driven by central synaptic
motor output (Fig. 8). Functionally mature neurotransmission is
characterized by large (greater than 1 nA) EJCs occurring in
patterned episodic bursts (Broadie et al., 1997), which are absent
when centrally generated action potentials are blocked

(Featherstone et al., 2001; Rohrbough et al., 2007). For control
recordings, 70% (12/17) exhibited patterned and/or large
(exceeding 1 nA) activity-dependent EJCs. Control EJC amplitude
histograms revealed a majority component of 100-300 pA
amplitudes, with a significant second component (32% of EJCs) of
amplitudes exceeding 500 pA, which correspond to activity-driven
patterned EJCs (Fig. 8A). In mtg mutants (mtg1 and mtg1/Df), no
defined EJCs were detected in 5/7 (over 70%) records. Small
isolated EJCs were observed in 1/7 embryos, and large amplitude
EJCs were recorded in only 1/7 embryos (Fig. 8B). This result
clearly shows that loss of Mtg greatly reduces overall activity-
dependent transmission.

jeb and Alk mutants similarly exhibited severely reduced
endogenous neurotransmission. In jeb mutants, no large (exceeding
500 pA) or patterned EJCs were recorded (maximum amplitude of
439 pA; Fig. 8C). No EJCs were detected in 3/5 jeb recordings, and
overall EJC frequency was below 1 Hz in 2/5 active cells (89 EJCs
during 486 seconds; Fig. 8C). In Alk mutants, no large or patterned
EJCs were recorded (maximum amplitude of 429 pA), and overall
EJC frequency was below 1 Hz in the 4/5 active cells (88 EJCs
during 463 seconds; Fig. 8D). In summary, EJCs exceeding 400-
500 pA were infrequent or effectively absent in mtg, jeb and Alk
mutants, with overall transmission frequency reduced by at least
90% from normal levels (control, 3.4±4.1 Hz; mtg, 0.35±0.78 Hz;
jeb, 0.17±0.25 Hz; Alk1, 0.20±0.21 Hz; P�	0.01 versus control for
all mutant genotypes) (Fig. 8E). Cumulative EJC amplitude in
mutants was reduced by 50-75% (control, 385±8 pA; mtg1, 187±14
pA; jeb, 92±9 pA; Alk1, 131±10 pA; P�	0.0001 versus control for
all mutant genotypes) (Fig. 8F). The loss of endogenous activity-
dependent and patterned transmission suggests an impairment in
functional central synapse connectivity in the absence of Jeb-Alk
signaling.

To directly assay central synaptic connectivity in early larvae,
we recorded synaptic activity in the dorsal central motoneurons that
drive glutamatergic NMJ transmission and episodic locomotion
(Baines et al., 2002; Baines, 2003) (see Fig. S5C in the
supplementary material). Control neurons displayed characteristic
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Fig. 6. NMJ molecular differentiation and
morphology in jeb and Alk mutants.
Embryonic NMJ synapses (20-22 hours) in
control (left) and jeb, Alk1 and Alk8 Drosophila
mutants. (A)Presynaptic synaptotagmin (Syt,
green) and Brp (red). jeb and Alk mutants
display normal differentiation of these markers
and normal synaptic structural morphology.
(B)Syt (left), Brp (middle) and merged labeling
(NMJ 6/7). (C)Postsynaptic Dlg (red) and
GluRIIC (green). jeb and Alk mutants display
normal postsynaptic differentiation based on
these markers. (D)Dlg (left), GluRIIC (middle)
and merged labeling (NMJ 6/7). Scale bars:
5m in A,C; 2m in B,D.
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sustained excitatory currents supporting action potentials, with a
mean event frequency of 4.5/minute (n6), as we reported
previously (Featherstone et al., 2005). By contrast, jeb, Alk and mtg
mutant recordings showed more variable levels of synaptically
driven activity, including examples lacking activity. Overall
excitatory event frequencies in mutants were reduced by 30-50%
(jeb, 3.0/minute; Alk1, 3.3/minute; mtg1, 2.3/minute; n4-5; see Fig.
S5D in the supplementary material); however, owing to heightened
variability, these reductions were not statistically significant from
controls (P>0.4). Excitatory current amplitudes were comparable
for all genotypes (not shown). These results indicate functional
interneuron-motoneuron connectivity in jeb, Alk1 and mtg1 mutants,
and suggest that mutant locomotory impairments might be due to
upstream synaptic defects.

DISCUSSION
Jeb-Alk anterograde signaling during embryonic
synaptogenesis
Jeb and Alk are localized to pre- and postsynaptic junctions during
embryonic synaptogenesis, predicting an inductive anterograde
synaptic signaling role. Jeb-Alk RTK signaling at embryonic
somatic-visceral mesoderm junctions similarly directs visceral
muscle specification and differentiation (Loren et al., 2001;
Englund et al., 2003; Lee et al., 2003; Loren et al., 2003). Jeb is the
only identified Alk ligand, and Alk is the only identified Jeb
receptor. It was recently shown that the C. elegans Alk ortholog
SCD-2 is similarly neuronally expressed and activated by a Jeb-
like secreted ligand, HEN-1, which contains an LDLa domain

(Reiner et al., 2008). Jeb-Alk anterograde signaling has recently
been shown to regulate circuit formation in the Drosophila
developing optic lobe (Bazigou et al., 2007).

Jeb-Alk NMJ and neuropil expression patterns indicate that
anterograde signaling occurs at both peripheral and central
synapses. Jeb localizes to NMJ presynaptic terminals and is
secreted extracellularly, whereas Alk localizes to opposing
postsynaptic membranes. The Jeb neuronal expression/trafficking
profile suggests transport to the NMJ, rather than neuronal Jeb
uptake from muscle, as previously suggested (Weiss et al., 2001).
Jeb and Alk display reciprocal expression levels at NMJ synapses,
with lower Jeb levels at boutons expressing highest postsynaptic
Alk levels. Jeb is also strongly increased at Alk mutant synapses,
suggesting that internalization of secreted Jeb in postsynaptic cells
requires Alk receptor function. This predicted synaptic signaling
cascade therefore parallels the mechanism in mesoderm
development (Loren et al., 2001; Englund et al., 2003; Lee et al.,
2003; Loren et al., 2003).

Mtg regulates Jeb-Alk synaptic expression
Our working hypothesis predicts that the ECM environment
modulates trans-synaptic ligand-receptor interactions. A key
finding, therefore, is that the Jeb-Alk pathway is regulated by
Mtg, a presynaptically secreted glycoprotein crucial for synaptic
cleft ECM formation (Rohrbough et al., 2007; Rushton et al.,
2009). In the absence of Mtg, postsynaptic Alk is strongly
reduced and secreted Jeb is dramatically accumulated at NMJ
synapses. Maintenance of Alk might be part of a larger role for
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Fig. 7. Impaired patterned locomotory movement but
normal NMJ postsynaptic GluR function in jeb and Alk
mutants. (A)Locomotion in newly hatched Drosophila larvae,
quantified as full-body peristaltic contractions in 120 seconds.
Control (wild type, jeb/CyO and Alk1/CyO) values are plotted as
white bars (left). Movement is severely reduced (***, P<0.0001)
in jeb and Alk1 mutants and by Alk muscle overexpression
(24B>Alk), and moderately reduced (*, P<0.03) by Alk neuronal
overexpression (elav>Alk). Movement in jeb mutants is
significantly improved (**, P<0.003) by neuronal Jeb expression
(jeb; elav>jeb), but unaltered by muscle expression (jeb;
24B>jeb). Neither muscle (24B>jeb) nor neuronal (elav>jeb)
Jeb overexpression impairs locomotion. n10-22 larvae per
genotype. N.S. vs Con, not significant versus control.
(B-D)Postsynaptic currents elicited by iontophoretic glutamate
application (arrows) at embryonic (20-22 hours) NMJs.
(B)Robust response in control (left), compared with a weak
response in the hypomorphic GluRIID mutant brecP2 (right).
(C)The strongly impaired GluR responses of the mtg null
mutant (mtg1/Df; left) are restored (right) in rescued mtg
mutants (mtg1; Uh1:Mtg). (D)Strong GluR currents in jeb (left)
and Alk mutants (right). (E)Quantified mean glutamate
responses in control and brec, mtg, jeb and Alk mutants
(***, P≤0.0005 versus control; *, P<0.03 jeb versus Alk1;
n4-6).
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Mtg in postsynaptic differentiation, as numerous postsynaptic
components are lost/mislocalized in mtg mutants (Rohrbough et
al., 2007). Alternatively, Mtg might more directly regulate Alk,
possibly by ECM tethering/anchoring of the Alk receptor. The
Jeb upregulation should be partly attributable to the Mtg-
dependent reduction in postsynaptic Alk. However, synaptic Jeb
is upregulated to a much greater degree, despite a less severe
downregulation of Alk, in mtg than in Alk null mutants. Jeb NMJ
expression is also modulated independently of Alk by targeted
neuronal or muscle Mtg overexpression, indicating that Mtg
regulates Jeb independently of Alk. We conclude that Mtg
expression and function are highly likely to regulate
developmental Jeb-Alk synaptic signaling. However, this
interpretation must be verified in future studies by demonstrating
a regulatory function for Mtg in previously established Jeb-Alk
RTK molecular signaling pathways (Englund et al., 2003; Lee et
al., 2003; Bazigou et al., 2007).

Mtg and Jeb are co-expressed in developing NMJ presynaptic
boutons, and are secreted to occupy largely overlapping domains
within the synaptomatrix. Our findings suggest that Mtg normally
acts at NMJ synapses to restrict localized Jeb accumulation
within the synaptomatrix. We suggest that the Mtg-dependent
ECM might function as a barrier to maintain localized Jeb pools
and/or as a scaffold that is required to appropriately present or
proteolytically remove Jeb in the extracellular signaling space. It
is presently unclear whether Mtg has a parallel regulatory role at
developing central synapses, where Mtg is expressed in a more

limited neuronal subset. Changes in central Jeb/Alk expression
might be indirectly related to Mtg loss or overexpression in the
CNS. Alternatively, changes in neuronal Mtg level might have
greater effects on Jeb/Alk NMJ expression. Mammalian Alk
candidate ligands, such as pleiotrophin, heparin affinity
regulatory peptide (HARP), heparin-binding neurotrophic factor
(HBNF), and midkine, are heparin-binding growth factors
(Palmer et al., 2009), further highlighting that Alk activation
occurs via ligands that function within the complex and dynamic
glycomatrix. We propose that Mtg-dependent modulation of
extracellular space is critical for the signaling activity of multiple
trans-synaptic signals.

Jeb-Alk signaling is required for functional
differentiation of motor circuits
The Jeb-Alk pathway is not detectably required for embryonic
axonal pathfinding, synapse morphogenesis or molecular assembly
during synaptogenesis, including the proper localized expression
of pre- and postsynaptic proteins. Likewise, Jeb-Alk function is not
required for establishing functional NMJ synapses, including
postsynaptic GluR domains. Jeb-Alk signaling is likely to have a
role(s) during postembryonic NMJ development. The Alk receptor
is required for expression and signaling of the TGF signaling
component Dpp in developing endoderm (Shirinian et al., 2007),
and Alk is similarly suggested to modulate a TGF pathway in C.
elegans (Reiner et al., 2008). Therefore, Alk potentially regulates
the TGF-dependent retrograde signaling pathway(s) involved in

3531RESEARCH ARTICLEJeb and Alk in synaptogenesis

Fig. 8. Impaired endogenous synaptic
communication in mtg, jeb and Alk Drosophila
mutants. (A-D)Inset traces show recordings of
endogenous excitatory junctional currents (EJCs; 1.8
mM external Ca2+) in controls and mutants. Control
NMJs exhibit bursts of large EJCs (exceeding 500 pA) in
patterned, activity-driven transmission. In mtg, jeb and
Alk mutants, large EJCs are absent. Histograms show
EJC amplitudes (100 pA/bin) for control and mutants.
(E,F)Quantified EJC frequency (E) and amplitude (F) are
both significantly reduced in mtg, jeb and Alk mutants
compared with control (***, P<0.0001; **, P<0.01).
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synaptic plasticity and function during larval NMJ development
(Aberle et al., 2002; Haghighi et al., 2003; McCabe et al., 2003;
McCabe et al., 2004).

Our results indicate that Jeb and Alk have a role in the
development of locomotion behavior. Jeb-Alk signaling regulates
somatic as well as visceral muscle differentiation, with similar
defects resulting from Alk removal or ectopic overexpression in
muscle (Stute et al., 2004). Likewise, we find that either muscle or
neuronal Alk overexpression impairs locomotion and results in
early larval lethality. However, jeb and Alk mutant muscle responds
to direct stimulation and evoked NMJ transmission is normal,
indicating that the primary locomotory impairment is not defective
muscle or NMJ function. Moreover, jeb mutant locomotion is
significantly rescued by neuronal, but not muscle, Jeb expression,
consistent with a requirement for Jeb signaling from central
neurons. Importantly, loss of Jeb-Alk signaling severely reduces
endogenous NMJ neurotransmission by effectively reducing the
occurrence of centrally generated, patterned synaptic output to the
NMJ (Broadie et al., 1997). The underlying excitatory synaptic
drive onto motoneurons parallels the development of locomotion
behavior (Baines et al., 1999; Baines, 2003). Central neuron
recordings show functional excitatory synaptic input to jeb/Alk and
mtg mutant motoneurons, which surprisingly show no significant
loss of activity that might be suggested by the severe locomotion
impairments. CNS dissection/recording conditions may effectively
re-excite depressed motor activity (Carhan et al., 2004), similar to
the effect of direct stimulation in provoking mutant movement.

Our results indicate that anterograde Jeb-Alk synaptic signaling
is crucial for the maturation of locomotory behavior, and that Mtg
regulatory activity intersects with the Jeb-Alk pathway during NMJ
synaptic differentiation. We propose that Jeb-Alk signaling is
essential for the functional differentiation of the central synaptic
connections that drive motor circuit activity. Loss of Jeb-Alk
signaling function impairs central excitatory synaptic transmission,
resulting in a loss of endogenous central pattern generator activity
driving motor output to the NMJ. Future studies will be directed
towards dissecting the intersecting roles of Mtg and Jeb secreted
signals in the functional differentiation of central motor circuits.
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