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autonomous. In this study, we were not able to address whether
skeletal Lmx1b expression is required for muscle patterning as the
phenotypes we observed were limited to distal tissues, where
dorsal-ventral muscle asymmetry is not evident. However, our
fate-mapping studies indicate that Lmx1b is expressed in muscle
connective tissue and it is possible that conditional deletion of
Lmx1b in muscle connective tissue progenitors leads to dorsal-to-
ventral transformation of muscle tissues. Although Lmx1b is
required in skeletal progenitors, removal of Lmx1b activity in
these tissues does not affect tendon patterning, at least in the distal
limb bud. Hence, our results indicate, for the first time, that
tendon and skeletal patterning can be uncoupled and suggest a
relative degree of autonomy in the patterning of these two tissues.
It has been demonstrated that tendon controls bone ridge
patterning at the proximal limb (Blitz et al., 2009), and this,
together with our results, indicate that autonomous and non-
autonomous mechanisms coexist along the proximal-distal axis
during limb pattern formation.

Skeletal transformations are limited to distal
tissues in Sox9-Cre-mediated conditional deletion
and expression of Lmx1b
Mice that lack Lmx1b exhibit dorsal-to-ventral transformations of
all limb tissues at least to the mid-zeugopodal level (Chen et al.,
1998). Lmx1b is required in more proximal tissues, as evidenced by
its role in dorsal-ventral pathfinding by motoneurons, a process that
requires the specification of a proximal branch point at the base of
the limb bud on or around E10.5 (Kania and Jessell, 2003).
Additionally, a feature of attenuation of Lmx1b function is a
reduction of the patella in humans and its complete loss in
homozygous mutant mice (Chen and Johnson, 1999; Dreyer et al.,
1998). Therefore, Lmx1b activity is required in both proximal and
distal limb bud tissues, although there might be a greater
requirement for Lmx1b function in distal tissues.

In contrast to the effect of complete deletion of Lmx1b, either in
the null allele or using conditional Prx1-Cre strategies, removal of
Lmx1b in skeletal progenitors results in patterning alterations that
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Fig. 6. Trichrome staining on P0 forelimb sections at the MP joint. (A) Anatomy of the mature wild-type MP joint. (B-F) Compared with the
wild-type forelimb (B), the Prx1 cKO shows a dorsal-to-ventral transformation phenotype in both tendon and skeletal tissues: the dorsal EDC tendon
is replaced by ventral FDP and FDS tendons (C, arrow) and the ventral tip structure on the metacarpal bone and the ventral sesamoids are
duplicated in dorsal (C, arrowhead and s). Sox9 cKO displays the transformation only in skeletal tissue (D, arrowhead and s). Prx1 cOE shows
reduced ventral FDS tendon (E, arrow) and reduced tip of metacarpal and sesamoids (E, arrowhead and s), whereas Sox9 cOE exhibits the reduction
only in sesamoids (F, s) and the tip of metacarpal (F, arrowhead). EDC, extensor digitorum communis; FDP, flexor digitorium sublimus; FDS, flexor
digitorium profundus; s, sesamoid. Scale bars: 100 mm.

Fig. 7. Formation of the metacarpophalangeal joint
and development of the skeletal and tendon
components within it. (A-E) Skeletal precursor cells
labeled by X-Gal staining on MP joint sections for
Sox9Cre/+; R26R/+ embryos at the stages indicated. 
(F-J) Tendon/ligament progenitors are visualized by green
fluorescence on MP joint sections from Scx-GFP/+
transgenic embryos. At E13.5, skeletal and tendon cells
are largely symmetrically distributed along dorsal-ventral
axis. The dorsal-ventral asymmetry starts to appear
because of the presence of the FDS/FDP tendon (G,
arrow) from E14.5 and of the ventral sesamoid bone (C,
arrows) at E15.5. The whole MP structure is fully
developed by E18.5. Scale bars: 100 mm.
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are limited to the digits. Several factors might account for this
difference. It is possible that skeletal progenitors only require Lmx1b
activity in the digits and that Lmx1b acts non-autonomously in more
proximal regions. This is unlikely, as skeletal patterning is generally
thought to be autonomous. A second, more likely, possibility is that
deletion of Lmx1b with Sox9-Cre occurs too late to have an effect on
proximal limb tissues. In skeletal progenitors, Lmx1b expression is
downregulated upon condensation and is not detectible in
cartilaginous primordia (Dreyer et al., 2004). Therefore, for Sox9-
Cre to recombine the loxP sites at the Lmx1b locus at a time when
Lmx1b is exerting its patterning effects, this must occur prior to the
differentiation of cartilaginous progenitors. We do observe
recombination as early as E11.5 using Sox9-Cre and Prx1-Cre (see
Fig. S2 in the supplementary material), and ectopic expression at
similar stages (see Fig. S3 in the supplementary material), although
recombination and ectopic expression are more complete by E13.5
(see Figs S2 and S3 in the supplementary material). Since limb
development is a progressive process from proximal to distal
(Johnson and Tabin, 1997), the fact that we observe only distal
phenotypes upon conditional loss and overexpression of Lmx1b
using Sox9-Cre might indicate that Lmx1b is deleted at a time when
its function can be revealed only in the distal-most limb tissues. This
possibility is supported by the timing of differentiation of skeletal
elements at the metacarpophalangeal joint. Currently, we are
examining temporal requirements for Lmx1b function using
tamoxifen-regulated conditional deletion and ectopic expression
strategies (Hayashi and McMahon, 2002). Such studies should
reveal at what times Lmx1b is required for dorsal-ventral
specification along the proximal-distal axis.

Coordination of limb musculoskeletal patterning
Our results indicate that Lmx1b-dependent skeletal patterning is
autonomous. Whether Lmx1b is required in tendon primordia to
direct tendon pattern is not known. We have crossed Scx-Cre mice
that express Cre recombinase in tendon primordia to Lmx1b floxed
mice, but did not observe any morphological alteration in tendon or
skeletal pattern (data not shown). It might be that Lmx1b activity is
not required in tendons, but more likely reflects an inability to delete
Lmx1b in tendon primordia at an early time point, a limitation of
current reagents. Nevertheless, our results suggest a degree of
autonomy in the patterning of skeletal tissues and that alteration of
skeletal patterning can occur independently of connective tissue
patterning. Whether this is the case for muscle has yet to be
determined. In any event, our results support an autonomous mode
of musculoskeletal patterning in which each tissue acquires pattern
independently. We speculate that connective tissue is patterned in a
similar manner to the cartilaginous primordia in a cell-autonomous
manner. Muscle, by contrast, is patterned non-cell-autonomously,
most likely through interaction with muscle connective tissue.
Approaches to address this issue include generating mice that
express Cre recombinase in muscle connective tissues and the
analysis of marked Lmx1b mutant clones in the developing limb
bud.

Control of dorsal-ventral limb patterning by
Lmx1b
Lmx1b functions in a similar manner to selector genes in Drosophila.
In previous studies, we have shown that Lmx1b is required to specify
murine dorsal limb pattern (Chen et al., 1998). Here, we show that
as in the avian embryo, murine Lmx1b is sufficient to redirect ventral
limb bud mesenchyme to a dorsal fate. In addition to its role in
specifying dorsal pattern, Lmx1b also functions to maintain a dorsal

mesenchyme compartment that is defined by the Lmx1b expression
domain (Arques et al., 2007; Pearse et al., 2007; Qiu et al., 2009).
Hence, Lmx1b is required to both specify pattern and to maintain
compartment boundaries, in analogy with selector genes, such as
engrailed, in the Drosophila wing imaginal disc (Mann and Carroll,
2002). How Lmx1b, or any other vertebrate selector gene, functions
to either specify pattern or to maintain compartment boundaries is
not understood at the molecular level. However, it is likely that
Lmx1b controls pattern in a manner analogous to that defined by the
selector genes vestigial and scalloped in the wing imaginal disc,
where these genes modify the responsiveness of target promoters to
cell-intrinsic and extrinsic signals (Halder et al., 1998). In this
manner, Lmx1b would function essentially as a binary signal: on in
dorsal limb mesenchyme and off in ventral limb bud mesenchyme.
This binary signal would then interface with a default ventral
program and alter the responsiveness of target genes in dorsal
tissues. At present, no direct targets of Lmx1b have been described
in the developing limb bud, although several genes have been
identified, the expression pattern of which is dependent on Lmx1b
(Dreyer et al., 2004; Krawchuk and Kania, 2008). Clearly, the
identification of direct Lmx1b targets will provide insight into how
Lmx1b controls dorsal limb pattern. Moreover, our results suggest
that these targets might in fact be distinct in different limb progenitor
tissues. For example, if Lmx1b is required in muscle connective
tissue to pattern muscle in a non-cell-autonomous manner, then at
least some of the relevant targets in muscle connective tissue are
likely to be cell surface or secreted factors. Likewise, Lmx1b is
autonomously required in skeletal progenitors, and its direct targets
in those progenitors are likely to be responsible for stabilization or
modulation of the pattern of cartilaginous progenitor cells. In any
event, the results of our current study will provide a framework for
understanding the developmental logic of dorsal-ventral patterning
controlled by Lmx1b.
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