








villous projections; however, towards the end of cellularisation, long
projections persisted in dop mutants, whereas the surface became
smooth in the wild type (Fig. 4F,G). Thus, mutations in dop did not
generally affect F-actin-dependent structures during slow phase,
suggesting that Dop is an essential factor that controls the
redistribution of F-actin at the cycle 14 transition.

dop mutations synergise with mutations of the dynein/
dynactin complex
The phenotypes of dop mutants are reminiscent of the requirement
for microtubules in cellularisation. Inhibitor studies have indicated
that microtubules are essential for membrane growth in early but not
late stages of cellularisation (Foe et al., 1993; Lecuit and
Wieschaus, 2000). We previously reported that dop is required for

the dynein-based apical transport of lipid droplets (Gross et al.,
2000; Meyer et al., 2006). To further address the correlation
between dop and dynein we examined genetic interactions between
dop and genes encoding components of the dynein/dynactin
complex.

Hypomorphic mutations in short wing (sw), which encodes
Drosophila Dynein intermediate chain (Dic), exhibit similar adult
wing phenotypes to homozygous dopmutants; the wing margins, in
particular at the posterior, were partially deleted and wing veins
were also affected (Fig. 5A) (Boylan and Hays, 2002). In sw1 dop1

double mutants, the wing phenotype was enhanced, suggesting
that the two genes affect a common process (Fig. 5B,C). Given
the positive interaction of dop and sw, we investigated whether
dop interacts with the dynactin component Glued (also known as

Fig. 3. Furrow and bAJ formation in
dop mutants. (A) Wild-type and dop1

embryos stained for Patj and
Neurotactin (Nrt) showing abnormal
furrow canals and apical aggregates
of Nrt (arrow). The lower panel of
each pair shows a focal plane on the
level of furrows. (B) Measurement of
furrow width (see inset) indicated by
Slam localisation in pre-cellularisation
(p.c.), slow phase (s.p.) and fast
phase (f.p.). *P<0.0001 (t-test); error
bars indicate s.d. (n>230 for each
sample). (C-E) Live imaging of
E-cadherin-GFP in wild-type and dop1

mutant embryos in syncytial and
cellularisation stages. (C) Focussing of
E-cadherin-GFP into the basal junctions
during cell cycles 11-14. The extent of
E-cadherin-GFP was measured across
the newly forming furrow (see D).
*P<0.001 (t-test); error bars indicate s.d.
(n=25 furrows over time of two distinct
embryos each). (D) E-cadherin-GFP
dynamics in cell cycle (CC) 13 and 14 in
dop1 embryos. Z marks resliced stacks
showing the furrow region. Arrows mark
the edge of cell cycle 13E-cadherin-GFP
clusters moving towards clearly
demarcated junctions; note that at thecell
cycle 14 transition, not only do junctions
not focus at new furrows but also
previously existing junctions become
diffuse (red asterisks). (E) E-cadherin-
GFP during cell cycles 11-14. (F) Baz-
GFP at the cell cycle 13-14 transition in
wild type and dop1. Time is indicated in
h:min:s. Scale bars: 10 µm.
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p150/Glued). Glued binds Dic and the central dynactin component
Arp1 and thereby allows dynein to connect to cargo and enhances
processivity (Schroer, 2004). The dominant-negative mutant
Glued1 (Gl1) encodes a protein that can still bind to dynein, but
has lost its ability to bind to the dynactin complex (McGrail et al.,
1995).Gl1 induces a rough eye phenotype in flies due to effects on a
range of cellular processes, including nuclear localisation (Fan and
Ready, 1997). The Gl1 eye phenotype is sensitive to the doses of sw
and we find that this phenotype is also dominantly enhanced by
dop1, which on its own does not exhibit a rough eye phenotype
(Fig. 5D,E). We conclude that dop function is not restricted to
cellularisation and that dynein/dynactin-dependent processes are
sensitive to the levels of Dop.

Dop is required for phosphorylation of Dic
Since the function of Dop relies upon its protein kinase activity, the
simplest model of how Dop regulates dynein-dependent transport
would be by controlling the phosphorylation of the dynein/dynactin
complex. Phosphorylation of Dic at multiple sites regulates the
interaction of dynein with Glued and controls persistent minus end-
directed transport (Vaughan and Vallee, 1995; Vaughan et al., 2001;

Whyte et al., 2008; Ikeda et al., 2011). We examined Dic
phosphorylation in dop1 embryos. On immunoblots, the levels of
Dic are unimpaired in dopmutants comparedwithwild type (Fig. 6A).
After 2D gel electrophoresis, Dic isoforms were detected as a number
of closely associated spots (Fig. 6B). These data are consistent with
previous observations on Drosophila Dic demonstrating at least ten
differentially spliced isoforms (Nurminsky et al., 1998). Some of these
spots were at a slightly higher apparent molecular weight in the acidic
region andwere sensitive to phosphatase treatment, indicating that they
represent phosphorylated forms (Fig. 6B). In extracts of dop1 mutant
embryos, phosphorylated forms of Dic are strongly reduced, whereas
overexpression of Dop in the embryo increases the amount of
phosphorylated Dic (Fig. 6B-D).We conclude that Dop either directly
or indirectly controls phosphorylation levels of Dic, suggesting that
Dop is involved in the regulation of dynein-based transport in the
embryo.

Dop is required for dynein-based mRNA transport in the
embryo
The genetic interaction studies suggested that Dopmight have amore
general role in dynein-mediated processes. To test this notion, we

Fig. 4. Distribution of F-actin and furrow formation in
dop mutants. (A,B) Rhodamine-Phalloidin staining of
wild-type (A) and dop1 (B) embryos. Images from left to
right show progressive stages of cellularisation. Upper
rows show a transverse optical section and lower rows
show a focal plane on the level of the furrows. (C) Wild-
type and dop1 embryos stained for Rho1 (red) and Patj
(green). tv, transverse optical section; sf, surface optical
section; colour images represent merged channels.
(D,E) Transmission electron micrograph at the interface
of two adjacent emerging cells (arrowheads) during
slow phase. Note that the furrow canal extension (arrow)
in the wild type is missing in the dop1 mutant. nu,
nucleus. (F,G) Scanning electron micrographs showing
villous projections on the surface of wild type (F) and dop1

mutant (G) at different time points during cellularisation.
Left, cycle 14 transition; middle, slow phase; right, fast
phase. Scale bars: 10 µm in A,B; 2.5 µm in D,E; 5 µm
in F,G.
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examined the apical transport of mRNAs in dop mutant embryos.
Apical mRNA movement in the embryo is a well-characterised
system that depends on minus end-directed transport by dynein and
dynactin (Wilkie and Davis, 2001; Bullock et al., 2006). One
advantage of this system is that the motion of mRNA particles can be
characterised in detail by microinjection of highly fluorescent RNAs
coupled to rapid time-lapse imaging (Bullock et al., 2006). Similar to
lipid droplets, transport of mRNA particles along microtubules
occurs in a bi-directional fashion and net transport can occur as a
result of changes in the frequency, the persistence (run length) and the
velocity of plus end- versus minus end-directed bouts of transport
(Bullock et al., 2006; Vendra et al., 2007).
We injected the apically localisingmRNA hairy (h) intowild-type

and dop1 embryos before the fast phase of cellularisation and
automatically tracked their movements (Fig. 7A). The net apical,
i.e. minus end-directed, movement of mRNA particles was
significantly reduced in the mutant embryos (Fig. 7B). This
change was associated with decreases in the frequency, run
lengths and velocity of apical particle transport in dop mutants
(Fig. 7C-E). By contrast, the lengths and velocities of plus end runs
of RNA particles were not significantly different between wild-type
and dop mutant embryos (Fig. 7C,D). Qualitatively, the defects in
apical h mRNA transport in dop mutants are similar to those
exhibited by embryos in which components of the dynein-based
mRNA transport machinery are compromised, including the RNA-
binding protein Egalitarian, the adaptor protein Bicaudal D and the
dynein co-factor Lissencephaly-1 (Bullock et al., 2006; Dix et al.,
2013). These data provide direct evidence that Dop is important for
normal dynein-dependent transport in the early embryo.
The requirement of Dop for dynein-dependent transport and

normal phosphorylation of Dic suggested that the cellularisation
defects in dop mutants might be related to a malfunction in dynein
regulation. In contrast to dop, cytoplasmic dynein plays many
important roles during oogenesis and early cleavage division
(Gepner et al., 1996; Robinson et al., 1999). To test for a role of
dynein transport in cellularisation we took advantage of genetic
interactions of dop with sw and Gl. Since sw1 and Gl1 on their own
did not affect cellularisation (data not shown), we examined whether
sw1 and Gl1 would enhance the membrane growth defect of dop1

mutants. Using brightfield video microscopy, we found that the
defect in membrane growth in dop1 mutants was strongly enhanced

in both sw1 dop1 and Gl1 dop1 double mutants (Fig. 7F,G). In the
double mutants, membrane growth was strongly compromised
throughout cellularisation. These data implicate central players in
dynein-mediated microtubule-based transport, Glued and Dic, in
the regulation of membrane growth in cellularisation.

Mutations in dop impinge on the distribution of Rab11
endosomes and the Golgi complex
Membrane growth in cellularisation requires both Golgi-derived
vesicles and membrane supplied by the recycling endosome
(Pelissier et al., 2003; Papoulas et al., 2005). Given the reduced
membrane growth in dop mutants, we examined the localisation of
the Golgi and the recycling endosome using antibodies and
GFP-tagged Rab11 protein, respectively. During slow phase,
Rab11-GFP exhibits dynamic localisation to, and in the vicinity
of, the centrosomes apical to each nucleus (Fig. 8A; supplementary
material Movies 9 and 10). In dop mutants, Rab11-GFP was more
concentrated to the centrosomal area compared with controls
(Fig. 8A; supplementary material Movies 11 and 12). We also
analysed the distribution of a marker of the medial Golgi [p120,
also known as Glg1 (Stanley et al., 1997)] in early cellularisation
stages. Golgi membranes are transported in a dynein-dependent
fashion to the apical cytoplasm in early cellularisation (Papoulas
et al., 2005). We find that in dop mutants apical Golgi staining was
reduced compared with control embryos (Fig. 8B,C). Together,
these data indicate that dop is required for the normal distribution
and transport of endomembrane systems that are crucial for
membrane growth in cellularisation.

DISCUSSION
To our knowledge, we present the first mutational analysis of a
MAST kinase in any organism, and demonstrate that the MAST
kinase Dop plays an important role in plasma membrane cortex
compartmentalisation during the generation of epithelial polarity in
the fly. The results reported here demonstrate a requirement of Dop
in the establishment of the furrow canal and the bAJ at the cycle 14
transition. The defect in bAJ formation is likely to be a consequence
of a failure in the initial specification of the incipient furrows. We
propose that Dop acts upstream in furrow canal formation by
controlling the formation of F-actin-rich foci, which initiate the
assembly of a specific furrow membrane cortex.

Fig. 5. Genetic interactions of dop with the dynein/dynactin
complex. (A) dop1 wing phenotypes are enhanced by sw1.
Four different classes of wing phenotypes occurring in adults
mutant for dop or sw: wild type (class 1), margin defects
(class 2, arrow), vein defects (class 3, double-headed arrow), or
crippled (class 4). (B,C) Quantification of the occurrence of
these phenotypic classes for the indicated genotypes. (D,E) Eyes
from single- and double-mutant flies carrying dop1 and Gl1

alleles were imaged and the eye size represented in arbitrary
units. (E) dop1 enhances the Gl1 eye phenotype in a dominant
fashion: for Gl1,dop1 compared withGl1 control, P=1.629×10–63;
for Gl1/dop1 compared with Gl1 control, P=9.502×10–12;
**P<0.001 (t-test); error bars indicate s.e.m.; n>80 for all
genotypes.
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In mid-cellularisation stages, dop mutant phenotypes are
reminiscent of embryos lacking the early zygotic gene bottleneck
(bnk) (Schejter and Wieschaus, 1993). In bnk mutants the initial
formation of the cleavage furrows is normal, but then furrows close
prematurely. Although we cannot exclude the possibility that bnk
might play a role in later defects associated with dop mutations, the
primary defect in dopmutants concerned the lack of regular F-actin-
rich furrows during the onset of cellularisation. Another early
zygotic gene, nullo, is required for the proper recruitment of F-actin
during furrow canal formation (Sokac and Wieschaus, 2008b).
Nullo and the actin regulator RhoGEF2 have been proposed to act in
parallel pathways controlling processes that are distinct but both
essential for F-actin network formation during the establishment of
the furrow canal (Grosshans et al., 2005). Since early F-actin
rearrangements are largely normal in nullo and RhoGEF2 single
mutants, we propose that Dop is essential for the initial early
focussing of F-actin, whereas Nullo and RhoGEF2 are required to
elaborate and maintain F-actin levels to stabilise the furrows. The

actin regulator enabled (ena) has been shown to act downstream of
Abelson tyrosine kinase (Abl) in the redistribution of F-actin from
the plasma membrane cortex into the furrows in both syncytial
stages and cellularisation (Grevengoed et al., 2003). Although ena
would provide a good candidate for acting downstream of dop in the
redistribution of F-actin, ena is already required for syncytial
cleavages and the F-actin phenotypes in Ablmutants are much more
severe than those that we found for dop mutants.

The similarity of syncytial cleavage furrows and the cleavage
furrows at cellularisation raises the question of how they differ from
each other. Themolecular basis of the hexagonal pattern of the F-actin-
rich cell cortex at the cleavage furrow relies upon the recycling
endosome components Rab11 andNuclear fallout (Nuf) (Riggs et al.,
2003) and the actin polymerisation factorsDia (Afshar et al., 2000) and
Scar/Arp2/3 (Zallen et al., 2002). In contrast to dopmutants, nuf, dia or
Scarmutants indicate that these genes are required also for the dynamic
redistribution of F-actin during syncytial development. Since Dop is a
maternally supplied protein, its activity might be regulated by events
triggered during the cycle 13-14 transition. The major difference
between the furrows in syncytial stages and cellularisation is that
metaphase furrows are formed duringMphase,whereas cellularisation
furrows are formed during G2 phase. Since Dop is a maternally
supplied gene product, onewould have to implicate regulation of Dop
by zygotic factors to explain its phenotype at the cycle 13-14 transition.
An alternative possibility is thatDop is regulated byphosphorylationor
other post-translational modification through the cell cycle machinery
and that, in the absence of Cdk1-dependent phosphorylation, its
phosphorylation state is changed. We provide evidence that Dop is
indeed differentially post-translationally modified during syncytial
versus cellular blastoderm stages. We propose that such cell cycle-
dependent regulation of Dop may be crucial in transforming syncytial
cleavages into persistent cellularisation furrows. Furthermore, our data
suggest that this transition could require Dop-dependent regulation of
dynein-associated microtubule transport.

The mechanisms for the initial localisation of Baz and E-cadherin
are still unclear but, interestingly, dop is required for the localisation
of both proteins. At the cycle 14 transition, E-cadherin and Arm
puncta are associated with apical membrane projections and the
homophilic association of these cadherin puncta is strengthened by
membrane flow and is dependent on actin (McGill et al., 2009). Baz
function allows these puncta to become tightened into sAJs. Thus,
Dop might affect the stabilisation of the weakly interacting puncta
either through cortical actin organisation or membrane flow. In
addition to this early requirement for Baz localisation, Dop is also
involved in clearing Baz from the basal cytoplasm during late
cellularisation. The mechanism that eventually clears Baz from the
basal cytoplasm depends on dynein-based transport (Harris and
Peifer, 2005). Therefore, Dop is required for dynein-based transport
of different cargoes during cellularisation: lipid droplets, mRNA
particles, Golgi and Baz. We propose that the main function of Dop
in cellularisation is in regulating dynein-mediated transport of
important cargos along microtubules (Fig. 8D).

This study presents the first evidence for regulation of dynein-
mediated transport by a MAST family kinase. We show that Dop
controls phospho-Dic levels in a direct or indirectmanner. Thedata are
consistent with a model in which the initiation of furrow formation
involves dynein-dependent transport that is controlled by Dop
(Fig. 8D). In support of a role in membrane formation, we find
defects in the distribution of the recycling endosome and Golgi
compartments in dop mutants. Interference with Rab11 function
causes similar defects in Slam distribution as those shown by dop
mutants (Pelissier et al., 2003). Therefore, Dop might control the

Fig. 6. Dop is crucial for phosphorylation of Dic. (A) Protein extracts of
wild-type and dop1embryos (at 0-4 h) were used for immunoblotting using
anti-Dic antibody. α-Tubulin was used as loading control. (B-D) Separation
of Dic by 2D gel electrophoresis. Black bars indicate the axis of the first
dimension. (C) Magnification of the Dic 2D electrophoresis migration
pattern. Spots of Dic isoforms are marked by arrows. A row of protein
spots is detected in wild type (dashed circle) that is reduced in dop1

mutant protein extract. These acidic spots are sensitive to treatment
with active (+ ppase) but not inactivated (+ inact. ppase) phosphatase.
(D) Overexpression of Dop-GFP increases Dic phosphorylation. Genotypes:
wt is Gal4 driver alone (mat67::Gal4;mat15::Gal4); Dop-GFP is mat67::Gal4;
mat15::Gal4/UAS::Dop-GFP; dop1 is dop1/dop1. The percentages of the
relative intensities of phospho-Dic (left number for each panel) and
non-phospho Dic (right number for each panel) are indicated.
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transport of endomembrane compartments, which drive membrane
growth. In addition, F-actin redistribution plays a major role in
membrane cortical compartmentalisation in the initial stages of
cellularisation (Sokac and Wieschaus, 2008a, 2008b). The focussing
of F-actin to incipient furrows might involve a dynein-dependent
shift of actin regulators or existing actin filaments to the furrow. An
attractive hypothesis is that the translocation of F-actin and/or its
regulators is coupled to an endomembrane compartment that is
transported via microtubules towards the incipient furrow canals.
Future studies should aim to determine which dynein cargos
contribute to furrow formation and how Dop regulates Dic
phosphorylation at the molecular level.

MATERIALS AND METHODS
Drosophila strains and culture
Flies were kept on standard medium and embryos were collected on yeasted
apple juice agar plates. dopmutant alleles were created by EMSmutagenesis
and selected for non-complementation of the dop1 allele (Galewsky
and Schulz, 1992). The chromosomal deficiencies Df(3L)EP3417MR15
and Df(3L)EP1754MR20 were created by male recombination using
P[EP]Ago2EP3417 (Meyer et al., 2006). Fly lines were obtained from
Bloomington Drosophila Stock Center (Indiana University, IN, USA)
unless otherwise indicated: UAS::rab11-GFP, ubi::E-Cad-GFP (Oda and
Tsukita, 2001), UAS::Baz-GFP (gift of A. Wodarz, Göttingen, Germany),
mat-α-tubulin67;mat-α-tubulin15 (gift from D. St Johnston, Cambridge,
UK), NGT::Gal4 (gift from P. Gergen, Stony Brook, NY, USA).

Molecular biology
Transgenes were created using a pUASP-attB vector for site-directed
integration into M[vas-int.Dm]ZH-2A, M[3xP3-RFP.attP0]ZH-58A flies.
ACG6498 cDNAwas used as template to generate Dop constructs (primers
are listed in supplementary material Table S1). For dopΔDUF (lacking amino
acids 341-703), dopΔKinase (lacking amino acids 828-1181) and dopΔPDZ

(lacking amino acids 1512-1593) constructs, the appropriate coding
sequences were amplified by PCR and cloned into pUASP-attB. Equal
expression levels in transgenic flies were confirmed by western blot. For
tagged constructs the stop codon was replaced with 3×HA tag or EGFP
coding sequences.

Genetic characterisation of dop alleles
To map the break points of the non-complementary chromosomal deletions
Df(3L)XG9, Df(3L)MR15 and Df(3L)MR20, 45 different genomic regions of
200-600 bp were amplified by PCR in triplicate. Template genomic DNAwas
prepared fromhomozygousembryos,whichwere identified by immunostaining
against β-galactosidase expressed from balancer chromosomes. In the case of
Df(3L)XG9, the breakpoint was determined by genomic sequencing.

Immunohistochemistry and microscopy
Embryos were fixed in 4% formaldehyde in PBS/heptane or by heat fixation
(Müller, 2008). Primary antibodies were used at the following dilutions:
mouse anti-Dlg 4F3 (1:500; DSHB), rabbit anti-Slam (1:5000; gift of
J. Großhans, Göttingen, Germany), rabbit anti-Baz (1:5000; gift of
A. Wodarz, Göttingen, Germany), mouse anti-Arm 7A1 (1:50; DSHB),
mouse anti-Nrt BP-106 (1:10; DSHB), mouse anti-Dic 74.1 (1:2000; Abcam,
ab23905), mouse anti-p120 Golgi (1:500; Calbiochem, no longer available),

Fig. 7. Dop is required for dynein-based apical transport of h transcripts.Alexa488-labelled RNA corresponding to the h 30UTRwas injected into cellularising
embryos before the fast phase of cellularisation. The movement of fluorescent particles was recorded by video microscopy (supplementary material Movies
7 and 8). (A) Kymographs showing movement of a non-biased selection of Alexa488-labelled RNA particles. Four examples are shown for wild-type and dop1

embryos (t, time; d, distance in minus end/plus end polarity). Particles have an overall minus end-directed bias in both genotypes. (B-E) Quantification of
RNA motility resulting from automatic tracking and analysis of a larger number of RNA particle trajectories. (B) Mean rate of net minus end displacement
per RNA particle. (C) Mean length per RNA particle of runs towards the minus or plus end. (D) Mean velocity per particle in plus or minus end direction.
(E) Mean frequency per RNA particle of minus end- versus plus-end-directed motion and pauses. *P<0.05, **P<0.01, ***P<0.001 compared with wild type
(ANOVA test with a nested unbalanced model); error bars indicate s.e.m. (F) Kymographs showing membrane growth in wild type, dop1 and sw1;dop1 and
Gl1 dop1 mutants. In the lower panels the advancing membrane front is highlighted during slow phase (yellow) and fast phase (white). The angle of the
membrane front and the embryo surface is indicated. (G) The sw1 and Gl1 mutations both significantly enhance the defects in membrane growth during the
slow phase of dop1 homozygotes. *P<0.05, **P<0.001 (t-test); error bars indicate s.e.m.
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rat anti-E-Cad DCAD2 (1:50; DSHB) and rabbit anti-Dop 1303 (1:50; see
below). Fluorophor-conjugated secondary antibodies (Molecular Probes)
were used at 1:250 and DAPI at 1 µg/ml. Tubulin and Rhodamine-Phalloidin

staining of F-actin were performed as described (Tang et al., 2001).
Specimens were mounted in Mowiol/DABCO, imaged on a Leica SP2
confocal microscope and processed using ImageJ, Photoshop (Adobe) or
Volocity (PerkinElmer).

For transmission electron microscopy, samples were fixed by high-
pressure freezing and processed by freeze-substitution as described
(Grosshans et al., 2005). For scanning electron microscopy, embryos
were staged under halocarbon oil, fixed and processed as described (Müller
and Wieschaus, 1996). Specimens were dehydrated in a graded ethanol
series and dried using tetramethylsilane and coated with 20 nm gold-
palladium. Microscopy was performed on a Hitachi S4700 scanning
electron microscope and on a JEOL 1200EX transmission electron
microscope.

Quantification of imaging data
All quantifications were made using raw data in ImageJ (Schneider et al.,
2012). Membrane growth was measured from movies acquired by
brightfield video microscopy. An area of 1×326 pixels was taken from
each time point to be converted with the multiple kymograph plug-in (Seitz
and Surrey, 2006). The angle between the invaginating membrane and
vitelline membranewas used to indicate the speed of membrane growth. The
circumference of eyes was tracked using the line tool and the area was
measured using the multi-measure plug-in. Golgi particles positive for p120
immunolabelling were monitored from raw imaging data using the threshold
tool (Photoshop). Particles apical to the nuclei were quantified from
transverse optical sections.

Live imaging and analysis of mRNA motility
GFP-expressing embryos were staged to cycle 10 in halocarbon oil using a
dissection microscope. Selected embryos were manually de-chorionated
and glued to a cover slip. Movement of E-cad-GFP or Baz-GFP was
recorded on Leica SP2 or SP5 microscopes, with one image captured every
5 s. Transverse optical sections were taken in the mid-dorsal region and
surface views were recorded from 8 µm stacks with a step size of 0.5 µm and
displayed as maximum intensity projections. Rab11-GFPwas recorded on a
CSU-X1 system (Yokogawa) spinning disk microscope using a 60×/1.42
NA oil-immersion lens.

Alexa488-labelled capped RNA corresponding to the h 30UTR was
synthesised and injected into cycle 14 blastoderm embryos obtained from
dop1 females fertilised with dop1 males or into wild-type embryos from an
Oregon-R strain as described previously (Bullock et al., 2006). Images were
captured every 297 ms using an Ultraview ERS spinning disk system
(PerkinElmer) on an Olympus IX71 inverted microscope equipped with an
Orca-ER camera (Hamamatsu) using a 60×/1.2 NA UPlanApo water
objective. Automatic centroid-based tracking of mRNA particles was
performed as described (Bullock et al., 2006).

Protein analysis
Peptides from the N-terminus of Dop (ISTSTPQKNDEHQEQC and
MSRQEGAASRPADGAC) were synthesised and used to immunise rabbits
and to affinity purify antibodies (anti-Dop 1303) (Eurogentec). Protein
extracts from staged embryos were prepared in lysis buffer (50 mM Tris-
HCl pH 8.0, 150 mM NaCl, 1% Triton X-100, 0.1% β-mercaptoethanol)
and run on 3-8% Tris acetate SDS-PAGE (Invitrogen) and transferred to
PVDF membrane (Whatman, GE Healthcare) for immunoblotting. For 2D
PAGE, protein extracts from visually staged embryos were acetone
precipitated and redissolved in rehydration buffer [7 M urea, 2 M
thiourea, 1.2% CHAPS, 0.25% ampholytes (GE Healthcare), 0.4% ASB-
14, 43 mM DTT]. Protein concentration was established using 2-D Quant
(GE Healthcare). Equal amounts of protein were separated on pH 4-7
Immobiline DryStrip gels (Amersham) with the IPGphor isoelectric
focusing system (Amersham). The second dimension was performed on
4-12% bis-Tris Zoom gels (Invitrogen). Signal intensity on immunoblots
was measured using ImageJ.

For dephosphorylation assays, 100 μg protein lysate was incubated with
5 µl λ-protein phosphatase (New England BioLabs) at 30°C for 30 min. As
control, phosphatase was heat inactivated for 1 hour at 65°C in the presence
of 50 mM EDTA.

Fig. 8. Rab11 and Golgi compartments in dop mutant embryos.
(A) UAS-Rab11-GFP was expressed maternally (mat67::Gal4) in wild type
and dop1/dop10 transheterozygotes and imaged using a spinning disk
microscope. DIC, Nomarski image. Left panels are at the beginning of slow
phase and right panels are during slow phase. Top two rows show
transverse sections, bottom row is a surface view. (B) Anti-p120 Golgi
staining of w1118 and dop1 embryos at early slow phase stage.
Representative embryos are shown for each genotype at increasing
magnification (from top to bottom in each column). (C) Quantification of
apical Golgi particles stained by anti-p120. There is a significant reduction in
apical Golgi particles in dop1 embryos as determined from transverse
sections and normalised to the number of nuclei present on the section.
**P<0.01 (t-test); error bars indicate s.e.m.; w1118, n=7; dop1, n=9.
(D) Model of Dop function in cellularisation. (1) Transport along microtubules
controls furrow formation; dynein and kinesin might regulate this transport in
an interdependent fashion. (2) In the absence of dop, reduced Dic
phosphorylation affects the efficacy of this transport in both directions.
(3) In wild type, transport to and from the furrow region defines the lateral
extent of the incipient furrow by deposition of F-actin, its regulators and
endomembranes. (4) Lack of Dop results in an imbalance of dynein- and
kinesin-mediated transport, interfering with the focussing of incipient furrows.
MT, microtubules; MTOC, microtubule-organising centre.
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